Skip to main content
Log in

Graphical reasoning in compact closed categories for quantum computation

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

Compact closed categories provide a foundational formalism for a variety of important domains, including quantum computation. These categories have a natural visualisation as a form of graphs. We present a formalism for equational reasoning about such graphs and develop this into a generic proof system with a fixed logical kernel for reasoning about compact closed categories. A salient feature of our system is that it provides a formal and declarative account of derived results that can include ‘ellipses’-style notation. We illustrate the framework by instantiating it for a graphical language of quantum computation and show how this can be used to perform symbolic computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: LICS 2004, pp. 415–425. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  2. Abramsky, S., Gay, S., Nagarajan, R.: Interaction categories and the foundations of typed concurrent programming. In: Broy, M. (ed.) Proceedings of the 1994 Marktoberdorf Summer School on Deductive Program Design, pp. 35–113. Springer, New York (1996)

    Google Scholar 

  3. Asperti, A., Longo, G.: Categories, Types and Structures. MIT, Cambridge (1991)

    MATH  Google Scholar 

  4. Bundy, A., Richardson, J.: Proofs about lists using ellipsis. In: Proc. of the 6th LPAR. LNAI, vol. 1705, pp. 1–12. Springer, New York (1999)

    Google Scholar 

  5. Coecke, B.: Kindergarten Quantum Mechanics. Lecture Notes (2005)

  6. Coecke, B., Duncan, R.: Interacting quantum observables. In: ICALP 2008. LNCS (2008)

  7. Coecke, B., Paquette, E.O.: POVMs and Naimark’s theorem without sums. In: Proc. of the 4th International Workshop on Quantum Programming Languages (2006)

  8. Coecke, B., Pavlovic, D.: Quantum measurements without sums. In: The Mathematics of Quantum Computation and Technology, CRC Applied Mathematics & Nonlinear Science. Taylor and Francis, London (2007)

    Google Scholar 

  9. Duncan, R.: Types for quantum computation. Ph.D. thesis, Oxford University (2006)

  10. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation (Monographs in Theoretical Computer Science. EATCS Series). Springer, New York (2006)

    Google Scholar 

  11. Janssens, D., Rozenberg, G.: Graph grammars with node-label controlled rewriting and embedding. In: Proc. of the 2nd International Workshop on Graph-Grammars and Their Application to Computer Science, pp. 186–205. Springer, New York (1983)

    Chapter  Google Scholar 

  12. Kelly, G.M., Laplaza, M.L.: Coherence for compact closed categories. J. Pure Appl. Algebra 19, 193–213 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kissinger, A.: Graph rewrite systems for complementary classical structures in y-symmetric monoidal categories. Master’s thesis, University of Oxford (2008)

  14. Kock, J.: Frobenius Algebras and 2-D Topological Quantum Field Theories. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  15. Pati, A.K., Braunstein, S.L.: Impossibility of deleting an unknown quantum state. Nature 404, 164–165 (2000)

    Article  Google Scholar 

  16. Paulson, L.C.: Isabelle: A Generic Theorem Prover. Springer, New York (1994)

    MATH  Google Scholar 

  17. Pollet, M., Kerber, M.: Intuitive and formal representations: the case of matrices. In: MKM’04. LNCS, vol. 3119, pp. 317–331. Springer, New York (2004)

    Google Scholar 

  18. Prince, R., Ghani, N., McBride, C.: Proving properties about lists using containers. In: FLOPS. LNCS, vol. 4989, pp. 97–112. Springer, New York (2008)

    Google Scholar 

  19. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  Google Scholar 

  20. Schfürr, A.: Programmed Graph Replacement Systems, pp. 479–546. World Scientific, River Edge (1997)

    Google Scholar 

  21. Selinger, P.: Dagger compact closed categories and completely positive maps. In: Proc. of the 3rd International Workshop on Quantum Programming Languages (2005)

  22. Sexton, A.P., Sorge, V.: Semantic analysis of matrix structures. In: ICDAR ’05: Proceedings of the Eighth International Conference on Document Analysis and Recognition, pp. 1141–1145. IEEE Computer Society, Washington, DC (2005)

    Chapter  Google Scholar 

  23. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Statist. Comput. 26(5), 1484–1509 (1997)

    MATH  MathSciNet  Google Scholar 

  24. Velasco, P.P.P., de Lara, J.: Matrix approach to graph transformation: matching and sequences. In: ICGT. LNCS, vol. 4178, pp. 122–137. Springer, New York (2006)

    Google Scholar 

  25. Wootters, W., Zurek, W.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Dixon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dixon, L., Duncan, R. Graphical reasoning in compact closed categories for quantum computation. Ann Math Artif Intell 56, 23–42 (2009). https://doi.org/10.1007/s10472-009-9141-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-009-9141-x

Keywords

Mathematics Subject Classifications (2000)

Navigation