Skip to main content
Log in

An improved common-mode feedback loop for the differential-difference amplifier

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Unconditional stability of the high-gain amplifiers is a mandatory requirement for a reliable steady-state condition of time-discrete systems, especially for all blocks designed to sample-and-hold (S/H) circuits. Compared to differential path, the common-mode feedback loop is often affected by poles and zeros shifting that degrades the large signal response of the amplifiers. This drawback is made worse in some well-known topologies as the difference-differential amplifier (DDA) that shows non-constant transconductance and poor linearity. This work proposes a body-driven positive-feedback frequency compensation technique (BD-PFFC) to improve the linearity for precision DDA-based S/H applications. Theoretical calculations and circuit simulations carried out in a 0.13 μm process are also given to demonstrate its validity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Schetzen, M. (2006). The Volterra and Wiener theories of nonlinear systems. New York: Krieger Publishing Company.

    Google Scholar 

  2. Brown, T. W., Hakkarainen, M., & Fiez, T. S. (2009). Frequency-dependent sampling linearity. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(4), 740–753.

    Article  MathSciNet  Google Scholar 

  3. Sivashankar, N., & Khargonekar, P. P. (1991). Robust stability and performance analysis of sampled-data systems. In IEEE Conference on Decision and Control (pp. 881–886), IEEE Conf. Pub., doi:10.1109/CDC.1991.261446.

  4. Pude, M., Mukund, P. R., Singh, P., & Burleson, J. (2008). Using positive feedback to overcome gmro limitations in scaled CMOS amplifier design. In Midwest Symposium on Circuits and Systems (pp. 807–810), IEEE Conf. Pub., doi:10.1109/MWSCAS.2008.4616922.

  5. Schlarmann, M. E., Malik, S. Q., & Geiger, R. L. (2002). Positive feedback gain-enhancement techniques for amplifier design. In IEEE International Symposium on Circuits and Systems (pp. 37–40), IEEE Conf. Pub., doi:10.1109/ISCAS.2002.1010917.

  6. Annema, A. J., Nauta, B., Van Langevelde, R., & Tuinhout, H. (2005). Analog circuits in ultra-deep-submicron CMOS. IEEE Journal of Solid State Circuits, 40(1), 132–143.

    Article  Google Scholar 

  7. Carrillo, J. M., Torelli, G., Perez-Aloe, R., & Duque-Carrillo, J. F. (2007). 1–V Rail-to-rail CMOS OpAmp with improved bulk-driven input stage. IEEE Journal of Solid-State Circuits, 42(3), 508–517.

    Article  Google Scholar 

  8. Semiconductor Industry Association. (2010). International technology roadmap for semiconductors. Available at: http://www.itrs.net/. Accessed 20 July 2011.

  9. Centurelli, F., Simonetti, A., & Trifiletti, A. (2009). Near-optimum switched capacitor sample-and-hold circuit. In IEEE NORCHIP (pp. 1–4), IEEE Conf. Pub., doi:10.1109/NORCHP.2009.5397857.

  10. Centurelli, F., Simonetti, A., & Trifiletti, A. (2008). Switched capacitor sample-and-hold circuit with input signal range beyond supply voltage. In IEEE NORCHIP (pp. 75–78), IEEE Conf. Pub., doi:10.1109/NORCHP.2008.4738286.

  11. Centurelli, F., Simonetti, A., & Trifiletti, A. (2007). A sample-and-hold circuit with very low gain error for time interleaving applications. In European Conference on Circuit Theory and Design (pp. 456–459), IEEE Conf. Pub., doi:10.1109/ECCTD.2007.4529631.

  12. Sackinger, E., & Guggenbuhl, W. (1987). A versatile building block: The CMOS differential difference amplifier. IEEE Journal of Solid-State Circuits, 22(2), 287–294.

    Article  Google Scholar 

  13. Duque-Carrillo, J., Torelli, G., Perez-Aloe, R., Valverde, J., & Maloberti, F. (1995). Fully differential basic bulding blocks based on fully differential difference amplifiers with unity-gain difference feedback. IEEE Transaction on Circuits and Systems-I, 42(3), 190–192.

    Article  Google Scholar 

  14. Shrivastava, M., Mehta, R., Gupta, S., Agrawal, N., Baghini, M. S., Sharma, D. K., et al. (2011). Toward system on chip (SoC) development using FinFET technology: Challenges, solutions, process co-development & optimization guidelines. IEEE Transactions on Electron Devices, 58(6), 1597–1607.

    Article  Google Scholar 

  15. Miguel, J. M. A., Lopez-Martin, A. J., Acosta, L., Ramirez-Angulo, J., & Carvajal, R. G. (2011). Using floating gate and quasi-floating gate techniques for rail-to-rail tunable CMOS transconductor design. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(7), 1604–1614.

    Article  MathSciNet  Google Scholar 

  16. Fried, R., & Enz, C. C. (1996). Bulk driven MOST transconductor with extended linear range. Electronics Letters, 32(7), 638–640.

    Article  Google Scholar 

  17. Blalock, B. J., Li, H. W., Allen, P. E., & Jackson, S. A. (2000). Body-driving as a low-voltage analog design technique for CMOS technology. In Southwest Symposium on Mixed-Signal Design (pp. 113–118), IEEE Conf. Pub., doi:10.1109/SSMSD.2000.836457.

  18. Von Arnim, K., Borinski, E., Seegebrecht, P., Fiedler, H., Brederlow, R., Thewes, R., et al. (2005). Efficiency of body biasing in 90-nm CMOS for low-power digital circuits. IEEE Journal of Solid-State Circuits, 40(7), 1549–1556.

    Article  Google Scholar 

  19. Inchang, S., & Fox, R. M. (2004). Comparison of quasi-/pseudo-floating gate techniques. In IEEE International Symposium on Circuits and Systems (pp. 365–368), IEEE Conf. Pub., doi:10.1109/ISCAS.2004.1328207.

  20. Agostinelli, M., Alioto, M., Esseni, D., & Selmi, L. (2010). Leakage–delay tradeoff in FinFET logic circuits: A comparative analysis with bulk technology. IEEE Transactions on VLSI Systems, 18(2), 232–245.

    Article  Google Scholar 

  21. Pingli, H., Szukang, H., Lu, V., Peiyuan, W., Seung-Chul, L., Wenbo, L., et al. (2011). SHA-less pipelined ADC with in situ background clock-skew calibration. IEEE Journal of Solid-State Circuits, 46(8), 1893–1903.

    Article  Google Scholar 

  22. Devarajan, S., Singer, L., Kelly, D., Decker, S., Kamath, A., & Wilkins, P. (2009). A 16b 125MS/s 385mW 78.7 dB SNR CMOS pipeline ADC. In IEEE International Solid-State Circuits Conference Digest of Technical Papers, (pp. 86–87, 87a), IEEE Conf. Pub., doi:10.1109/ISSCC.2009.4977320.

  23. Carrillo, J. M., Torelli, G., Dominguez, M. A., Perez-Aloe, R., Valverde, J. M., & Duque-Carrillo, J. F. (2010). A family of low-voltage bulk-driven CMOS continuous-time CMFB circuits. IEEE Transactions on Circuits and Systems II, 57(11), 863–867.

    Article  Google Scholar 

  24. Castano, F., Torelli, G., Perez-Aloe, R., & Carrillo, J. M. (2010). Low-voltage rail-to-rail bulk-driven CMFB network with improved gain and bandwidth. In IEEE International Conference on Electronics, Circuits, and Systems (pp. 207–210), IEEE Conf. Pub., doi:10.1109/ICECS.2010.5724490.

  25. Gasulla, M., Casas, O., & Pallas-Areny, R. (2000). On the common mode response of fully differential circuits. In IEEE Instrumentation and Measurement Technology Conference (pp. 1045–1049), IEEE Conf. Pub., doi:10.1109/IMTC.2000.848900.

  26. Giustolisi, G., Palmisano, G., & Palumbo, G. (2000). CMRR frequency response of CMOS operational transconductance amplifiers. IEEE Transactions on Instrumentation and Measurement, 49(1), 137–143.

    Article  Google Scholar 

  27. Hernandez-Garduno, D., & Silva-Martinez, J. (2005). Continuous-time common-mode feedback for high-speed switched-capacitor networks. IEEE Journal of Solid-State Circuits, 40(8), 1610–1617.

    Article  Google Scholar 

  28. Choksi, O., & Carley, L. R. (2003). Analysis of switched-capacitor common-mode feedback circuit. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 50(12), 906–917.

    Article  Google Scholar 

  29. Banu, M., Khoury, J. M., & Tsividis, Y. (1988). Fully differential operational amplifiers with accurate output balancing. IEEE Journal of Solid-State Circuits, 23(6), 1410–1414.

    Article  Google Scholar 

  30. Weixun, Y., & Zimmermann, H. (2008). Continuous-time common-mode feedback circuit for applications with large output swing and high output impedance. In Workshop on Design and Diagnostics of Electronic Circuits and Systems (pp. 1–5), IEEE Conf. Pub., doi:10.1109/DDECS.2008.4538757.

  31. Gupta, A. K., Dhanasekaran, V., Soundarapandian, K., & Sanchez-Sinencio, E. (2006). Multipath common-mode feedback scheme suitable for high-frequency two-stage amplifiers. IEE Electronics Letters, 42(9), 499–500.

    Article  Google Scholar 

  32. Babanezhad, J. N. (1998). A rail-to-rail CMOS Opamp. IEEE Journal of Solid-State Circuits, 23(6), 1414–1417.

    Article  Google Scholar 

  33. Sooch, N. S. (1985). MOS cascode current mirror. U.S. patent 4,550,284.

  34. Monticelli, D. M. (1986). A quad CMOS single-supply Opamp with rail-to-rail output swing. IEEE Journal of Solid-State Circuits, 21,1026–1034.

    Google Scholar 

  35. Johns, D., Martin, K. (1996). Analog integrated circuit design. New York: Wiley. ISBN-13: 978-0471144489.

  36. Jacob Baker, R. (2010). CMOS circuit design, layout, and simulation (3rd ed.), IEEE Press Series on Microelectronic Systems. New York: Wiley-IEEE Press. ISBN 13: 978-0470881323.

  37. Hung, C.-C., Ismail, M., Halonen, K., & Porra, V. (1997). Low-voltage rail-to-rail CMOS differential difference amplifier. In IEEE International Symposium on Circuits and Systems (pp. 145–148), IEEE Conf. Pub., doi:10.1109/ISCAS.1997.608637.

  38. Srivastava, A., & Govindarajan, D. (2002). A fast ALU design in CMOS for low voltage operation. Journal VLSI Design, 14(4), 315–327.

    Article  Google Scholar 

  39. Centurelli, F., Simonetti, A., & Trifiletti, A. (2008). A low-power sample-and-hold circuit based on a switched-opamp technique. In International Conference on Signals and Electronic Systems (ICSES’08) (pp. 105–108), IEEE Conf. Pub., doi:10.1109/ICSES.2008.4673369.

  40. Recoules, H., Bouchakour, R., & Loumeau, R. (1998). A comparative study of two SC-CMFB networks used in fully differential OTA. In IEEE International Conference on Electronics, Circuits and Systems (pp. 291–294), IEEE Conf. Pub., doi:10.1109/ICECS.1998.814883.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Simonetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Centurelli, F., Simonetti, A. & Trifiletti, A. An improved common-mode feedback loop for the differential-difference amplifier. Analog Integr Circ Sig Process 74, 33–48 (2013). https://doi.org/10.1007/s10470-012-9961-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-012-9961-1

Keywords

Navigation