Skip to main content
Log in

Lossless inductance simulation and voltage-mode universal biquadratic filter with one input and five outputs using DVCCs

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A lossless floating inductance has been simulated using two differential voltage current conveyors, two resistors and one grounded capacitor. The proposed floating inductance needs not component matching condition. Base on the proposed floating inductance as building block, a new voltage-mode universal biquadratic filter with one input and five outputs can be obtained. The proposed universal biquad uses two differential voltage current conveyors, three resistors and two grounded capacitors. All standard filter functions; highpass, bandpass, lowpass, notch and allpass can be obtained, simultaneously, without changing the passive elements. The proposed universal biquad has the features of using only grounded capacitors and orthogonal controllable of resonance angular frequency and quality factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roberts, G. W., & Sedra, A. S. (1989). All current-mode frequency selective circuits. Electronics Letters, 25(12), 759–761. doi:10.1049/el:19890513.

    Article  Google Scholar 

  2. Roberts, G. W., & Sedra, A. S. (1992). A general class of current amplifier-based biquadratic filter circuits. IEEE Transactions on Circuits and Systems I, 39(4), 257–263. doi:10.1109/81.129453.

    Article  MATH  Google Scholar 

  3. Svoboda, J. A., McGory, L., & Webb, S. (1991). Applications of a commercially available current conveyor. International Journal of Electronics, 70(1), 159–164. doi:10.1080/00207219108921266.

    Article  Google Scholar 

  4. Pal, K. (1989). Modified current conveyors and their applications. Microelectronics Journal, 20(4), 37–40. doi:10.1016/0026-2692(89)90076-1.

    Article  Google Scholar 

  5. Senani, R. (1980). New tunable synthetic floating inductors. Electronics Letters, 16(10), 382–383. doi:10.1049/el:19800270.

    Article  Google Scholar 

  6. Pal, K. (1981). Novel floating inductance using current conveyors. Electronics Letters, 17(18), 638. doi:10.1049/el:19810447.

    Article  Google Scholar 

  7. Singh, V. (1981). Active RC singlr-resistance-controlled lossless floating inductance simulation using single grounded capacitor. Electronics Letters, 17(24), 920–921. doi:10.1049/el:19810641.

    Article  Google Scholar 

  8. Senani, R. (1982). Novel lossless synthetic floating inductor employing a grounded capacitor. Electronics Letters, 18(10), 413–414. doi:10.1049/el:19820283.

    Article  Google Scholar 

  9. Keskin, A. U., & Hancioglu, E. (2005). CDBA-based synthetic floating inductance circuits with electronic tuning properties. ETRI Journal, 27(2), 239–242.

    Article  Google Scholar 

  10. Yuce, E., & Cicekoglu, O. (2006). Novel floating inductance and FDNR simulations employing CCII+s. Journal of Circuits, Systems, and Computers, 15(1), 75–81. doi:10.1142/S0218126606002964.

    Article  Google Scholar 

  11. Yuce, E., Cicekoglu, O., & Minaei, S. (2006). CCII-based grounded to floating immittance converter and a floating inductance simulator. Analog Integrated Circuits and Signal Processing, 46(3), 287–291. doi:10.1007/s10470-006-1624-7.

    Article  Google Scholar 

  12. Mohan, P. V. A. (1998). Grounded capacitor based grounded and floating inductance simulation using current conveyors. Electronics Letters, 34(11), 1037–1038. doi:10.1049/el:19980783.

    Article  Google Scholar 

  13. Bialko, M., & Newcomb, R. W. (1971). Generation of all finite linear circuits using the integrated DVCCs. IEEE Transactions on Circuit Theory, 18(6), 733–736. doi:10.1109/TCT.1971.1083351.

    Article  Google Scholar 

  14. Senani, R. (1978). Realisation of single-resistance-controlled lossless floating inductance. Electronics Letters, 14(25), 828–829. doi:10.1049/el:19780560.

    Article  Google Scholar 

  15. Patranabis, D., & Paul, A. N. (1979). Floating ideal inductor with one DVCCS. Electronics Letters, 15(18), 545–546. doi:10.1049/el:19790392.

    Article  Google Scholar 

  16. Nandi, R. (1980). Lossless inductor simulation: Novel configurations using DVCCS. Electronics Letters, 16(17), 666–667. doi:10.1049/el:19800472.

    Article  Google Scholar 

  17. Singh, V. K. (1981). Comment on lossless inductor simulation: Novel configurations using DVCCS. Electronics Letters, 17(15), 549–551. doi:10.1049/el:19810384.

    Article  Google Scholar 

  18. Khan, I. A., Ahmed, M. T., & Parveen, T. (1988). Novel wide-range electronically tunable ideal grounded inductance. IEE Proceedings Part G, 135(3), 104–106.

    Google Scholar 

  19. Karybakas, C. A., Kosmatopoulos, C., & Laopoulos, T. (1992). Improved temperature compensation of OTAs. Electronics Letters, 28(8), 763–764. doi:10.1049/el:19920482.

    Article  Google Scholar 

  20. Soliman, A. M. (1996). Applications of the current feedback amplifiers. Analog Integrated Circuits and Signal Processing, 11, 265–302. doi:10.1007/BF00240490.

    Article  Google Scholar 

  21. Liu, S. I., & Tsao, H. W. (1991). New configurations for single CCII biquads. International Journal of Electronics, 70(3), 609–622. doi:10.1080/00207219108921313.

    Article  Google Scholar 

  22. Soliman, A. M. (1998). A new filter configuration using current feedback op-amp. Microelectronics Journal, 29(7), 409–419. doi:10.1016/S0026-2692(97)00025-6.

    Article  Google Scholar 

  23. Ibrahim, M. A., Minaei, S., & Kuntman, H. (2005). A 22.5 MHz current-mode KHN-biquad using differential voltage current conveyor and grounded passive elements. AEU International Journal of Electronics and Communications, 59(5), 311–318. doi:10.1016/j.aeue.2004.11.027.

    Article  Google Scholar 

  24. Fabre, A. (1993). Insensitive voltage-mode and current-mode filters from commercially available transimpedance opamps. IEE Proceedings Part G, 140(5), 319–321.

    Google Scholar 

  25. Soliman, A. M. (1994). Kerwin-Huelsman-Newcomb circuit using current conveyors. Electronics Letters, 30(24), 2019–2020. doi:10.1049/el:19941368.

    Article  Google Scholar 

  26. Chang, C. M., Hwang, C. S., & Tu, S. H. (1994). Voltage-mode notch, lowpass and bandpass filter using current-feedback amplifiers. Electronics Letters, 30(24), 2022–2023. doi:10.1049/el:19941416.

    Article  Google Scholar 

  27. Senani, R. (1998). Realization of a class of analog signal processing/signal generation circuits: Novel configurations using current feedback Op-Amps. Frequenz, 52(9–10), 196–206.

    Google Scholar 

  28. Chang, C. M., & Lee, M. J. (1999). Voltage-mode multifunction filter with single input and three outputs using two compound current conveyors. IEEE Transactions on Circuits and Systems. I, Fundamental Theory and Applications, 46(11), 1364–1365. doi:10.1109/81.802827.

    Article  MathSciNet  Google Scholar 

  29. Singh, A. K., & Senani, R. (2002). A new four-CC-based configuration for realizing a voltage-mode biquad filter. Journal of Circuits, Systems, and Computers, 11(3), 213–218. doi:10.1142/S0218126602000434.

    Article  Google Scholar 

  30. Horng, J. W., Chiu, W. Y., & Wei, H. Y. (2004). Voltage-mode highpass, bandpass and lowpass filters using two DDCCs. International Journal of Electronics, 91(8), 461–464. doi:10.1080/00207210412331294603.

    Article  Google Scholar 

  31. Abuelma’atti, M. T., & Al-Zaher, H. A. (1998). New universal filter with one input and five outputs using current-feedback amplifiers. Analog Integrated Circuits and Signal Processing, 16(3), 239–244. doi:10.1023/A:1008266223999.

    Article  Google Scholar 

  32. Horng, J. W., Hou, C. L., Chang, C. M., Chung, W. Y., & Wei, H. Y. (2005). Voltage-mode universal biquadratic filters with one input and five outputs using MOCCIIs. Computers & Electrical Engineering, 31(3), 190–202. doi:10.1016/j.compeleceng.2005.03.002.

    Article  MATH  Google Scholar 

  33. Horng, J. W., Hou, C. L., Chang, C. M., & Chung, W. Y. (2006). Voltage-mode universal biquadratic filters with one input and five outputs. Analog Integrated Circuits and Signal Processing, 47(1), 73–83. doi:10.1007/s10470-006-2224-2.

    Article  Google Scholar 

  34. Horng, J. W., Hou, C. L., Chang, C. M., Chou, H. P., & Lin, C. T. (2006). High input impedance voltage-mode universal biquadratic filter with one input and five outputs using current conveyors. Circuits, Systems and Signal Processing, 25(6), 767–777. doi:10.1007/s00034-005-1227-z.

    Article  MATH  MathSciNet  Google Scholar 

  35. Bhusan, M., & Newcomb, R. W. (1967). Grounding of capacitors in integrated circuits. Electronics Letters, 3(4), 148–149. doi:10.1049/el:19670114.

    Article  Google Scholar 

  36. Sun, Y., & Fidler, J. K. (1997). Structure generation and design of multiple loop feedback OTA-grounded capacitor filters. IEEE Transactions on Circuits and Systems I, 44(1), 1–11.

    Google Scholar 

  37. Gupta, S. S., & Senani, R. (2003). Realisation of current-mode SRCOs using all grounded passive elements. Frequenz, 57(1–2), 26–37.

    Google Scholar 

  38. Elwan, H. O., & Soliman, A. M. (1997). Novel CMOS differential voltage current conveyor and its applications. IEE Proceedings Part G, 144(3), 195–200.

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Chung Yuan Christian University for financial support on this work. Thanks are also due to anonymous reviewers and Associate Editor, which have enabled the author to revised the paper and enhance its quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiun-Wei Horng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horng, JW. Lossless inductance simulation and voltage-mode universal biquadratic filter with one input and five outputs using DVCCs. Analog Integr Circ Sig Process 62, 407–413 (2010). https://doi.org/10.1007/s10470-009-9341-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-009-9341-7

Keywords

Navigation