Skip to main content

Advertisement

Log in

Ecological benefits provided by alley cropping systems for production of woody biomass in the temperate region: a review

Agroforestry Systems Aims and scope Submit manuscript

Abstract

In temperate Europe alley cropping systems which integrate strips of short rotation coppices into conventional agricultural fields (ACS) are receiving increasing attention. These systems can be used for crops and woody biomass production at the same time, enabling farmers to diversify the provision of market goods. Adding trees into the agricultural land creates various additional benefits for the farmer and society, also known as ecosystem services. However, tree-crop interactions in the temperate region have not been adequately substantiated which is identified as a drawback to the practical implementation of such systems. In order to bridge this gap, the current paper aims to present a comprehensive overview of selected ecosystem services provided by agroforestry with focus on ACS in the temperate region. The literature indicates that compared with conventional agriculture ACS have the potential to increase carbon sequestration, improve soil fertility and generally optimize the utilization of resources. Furthermore, due to their structural flexibility, ACS may help to regulate water quality, enhance biodiversity, and increase the overall productivity. ACS are shown as suitable land use systems especially for marginal sites. Based on the available data collected, we conclude that ACS are advantageous compared to conventional agriculture in many aspects, and therefore suggest that they should be implemented at a larger scale in temperate regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Ainalis AB, Tsiouvaras CN (1998) Forage production of woody fodder species and herbaceous vegetation in a silvopastoral system in northern Greece. Agrofor Syst 42:1–11. doi:10.1023/A:1006112330453

    Article  Google Scholar 

  • Allen SJ, Hall RL, Rosier PT (1999) Transpiration by two poplar varieties grown as coppice for biomass production. Tree Physiol 19:493–501

    Article  PubMed  Google Scholar 

  • Allen SC, Jose S, Nair PKR, Brecke BJ, Ramsey CL (2004) Competition for 15N-labeled fertilizer in a pecan (Caryaillinoensis K. Koch) cotton (Gossypium hirsutum L.) alley cropping system in the southern United States. Plant Soil 263:151–164. doi:10.1023/B:PLSO.0000047732.95283.ac

    Article  CAS  Google Scholar 

  • Anderson SH, Udawatta RP, Seobi T, Garrett HE (2009) Soil water content and infiltration in agroforestry buffer strips. Agrofor Syst 75:5–16. doi:10.1007/s10457-008-9128-3

    Article  Google Scholar 

  • Aronsson PG, Bergström LF, Elowson SNE (2000) Long-term influence of intensively cultured short-rotation Willow coppice on nitrogen concentrations in groundwater. J Environ Manag 58:135–145. doi:10.1006/jema.1999.0319

    Article  Google Scholar 

  • Arzt T (1950) Mikroklimatische Untersuchungen über Windschutz in einem Kulturpflanzenstand. Phyton 2:157–181

    Google Scholar 

  • Aylott MJ, Casella E, Tubby I, Street NR, Smith P, Taylor G (2008) Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK. New Phytol 178:358–370. doi:10.1111/j.1469-8137.2008.02396.x

    Article  PubMed  Google Scholar 

  • Bailey N, Motavalli P, Udawatta R, Nelson K (2009) Soil CO2 emissions in agricultural watersheds with agroforestry and grass contour buffer strips. Agrofor Syst 77:143–158. doi:10.1007/s10457-009-9218-x

    Article  Google Scholar 

  • Bärwolff M, Vetter A, Böhm C, Hoffmann J, Schmidt C (2011) Projekt AgroForstEnergie—Was bringen Streifen-Kup? Energ Pflanz 2:10–12

    Google Scholar 

  • Baum S, Weih M, Busch G, Kroiher F, Bolte A (2009) The impact of short rotation coppice plantations on phytodiversity. Landbauforsch Völkenrode 59(3):163–170

    Google Scholar 

  • Bemmann A, Feger KH, Gerold D, Große W, Hartmann KU, Petzold R, Röhle H, Schweinle J, Steinke C (2007) Kurzumtriebsplantagen auf landwirtschaftlichen Flächen in der Region Großenhain im Freistaat Sachsen. Forstarch 78:95–101

    Google Scholar 

  • Berg A (2002) Breeding birds in short-rotation coppices on farmland in central Sweden—the importance of Salix height and adjacent habitats. Agric Ecosyst Environ 90:265–276. doi:10.1016/S0167-8809(01)00212-2

    Article  Google Scholar 

  • Bergström L, Johansson R (1992) Influence of short-rotation forest plantations on nitrogen concentrations in groundwater. Soil Use Manag 80:36–40. doi:10.1111/j.1475-2743.1992.tb00890.x

    Article  Google Scholar 

  • Boehmel C, Lewandowski I, Claupein W (2008) Comparing annual and perennial energy cropping systems with different management intensities. Agric Syst 96:224–236. doi:10.1016/j.agsy.2007.08.004

    Article  Google Scholar 

  • Boelcke B, Kahle P (2008) Energieholzproduktion mit Weiden und Pappeln—Ertragsbildung und Grundnährstoffbedarf. Pflanzenbauwissenschaften 12:78–85

    Google Scholar 

  • Böhm C, Quinkenstein A, Freese D, Hüttl RF (2009) Wachstumsverlauf von vierjährigen Robinien. AFZ-DerWald 10:532–533

    Google Scholar 

  • Böhm C, Quinkenstein A, Freese D, Hüttl RF (2010) Energieholzproduktion in Agroforstsystemen als ein Beitrag zur Verbesserung des Bodenschutzes. Bodenschutz in Europa: Ziele und Umsetzung—6. Marktredwitzer Bodenschutztage, 06–08. Oktober 2010 in Marktredwitz, Bayern. Stadt Marktredwitz, p 78–84

  • Böhm C, Quinkenstein A, Freese D, Hüttl RF (2011) Assessing the short rotation woody biomass production on marginal post-mining areas. J For Sci 57(7):303–311

    Google Scholar 

  • Borjesson P (1999) Environmental effects of energy crop cultivation in Sweden—I: identification and quantification. Biomass Bioenerg 16:137–154. doi:10.1016/S0961-9534(98)00080-4

    Article  CAS  Google Scholar 

  • Boyer DG, Neel JPS (2010) Nitrate and fecal coliform concentration differences at the soil/bedrock interface in Appalachian silvopasture, pasture, and forest. Agrofor Syst 79:89–96

    Article  Google Scholar 

  • Brandle JR, Hodges L, Zhou XH (2004) Windbreaks in North American agricultural systems. Agrofor Syst 61–62:65–78. doi:10.1023/B:AGFO.0000028990.31801.62

    Article  Google Scholar 

  • Burel F (1989) Landscape structure effects on carabid beetles spatial patterns in western France. Landsc Ecol 2:215–226

    Article  Google Scholar 

  • Burgess PJ (1999) Effects of agroforestry on farm biodiversity in the UK. Scott For 53:24–27

    Google Scholar 

  • Burgess SSO, Adams MA, Turner NC, White DA, Ong CK (2001) Tree roots: conduits for deep recharge of soil water. Oecologia 126:158–165. doi:10.1007/s004420000501

    Article  Google Scholar 

  • Busch G (2009) The impact of short rotation coppice cultivation on groundwater recharge—a spatial (planning) perspective. Landbauforschung vTI Agric For Res 3:207–222

    Google Scholar 

  • Caldwell MM, Richards JH (1989) Hydraulic lift: water efflux from upper roots improves effectiveness of water uptake by deep roots. Oecologia 79:1–5. doi:10.1007/BF00378231

    Article  Google Scholar 

  • Chifflot V, Bertoni G, Cabanettes A, Gavaland A (2006) Beneficial effects of intercropping on the growth and nitrogen status of young wild cherry and hybrid walnut trees. Agrofor Syst 66:13–21. doi:10.1007/s10457-005-3650-3

    Article  Google Scholar 

  • Cleugh HA (1998) Effects of windbreaks on airflow, microclimates and crop yield. Agrofor Syst 41:55–84

    Article  Google Scholar 

  • Cleugh HA, Miller JM, Böhm M (1998) Direct mechanical effects of wind on crops. Agrofor Syst 41:85–112. doi:10.1023/A:1006067721039

    Article  Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Naeem S, Limburg K, Paruelo J, O’Neill RV, Raskin R, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • Current DA, Brooks KN, Ffolliott PF, Keefe M (2009) Moving agroforestry into the mainstream. Agrofor Syst 75:1–3. doi:10.1007/s10457-008-9187-5

    Article  Google Scholar 

  • Daniels RB, Gilliam JW (1996) Sediment and chemical load reduction by grass and riparian filters. Soil Sci Soc Am J 60:246–251

    Article  CAS  Google Scholar 

  • Di Nasso NNO, Guidi W, Ragaglini G, Tozzini C, Bonari E (2010) Biomass production and energy balance of a 12-year-old short-rotation coppice poplar stand under different cutting cycles. Glob Chang Biol Bioenerg 2:89–97

    Article  Google Scholar 

  • Diemont SAW, Martin JF, Levy-Tacher SI, Nigh RB, Ramirez Lopez P, Duncan Golicher J (2006) Lacandon maya forest management: restoration of soil fertility using native tree species. Ecol Eng 28:205–212

    Article  Google Scholar 

  • Dimitriou I, Busch G, Jacobs S, Schmidt-Walter P, Lamersdorf N (2009) A review of the impacts of short rotation coppice cultivation on water issues. Landbauforschung vTI Agric For Res 59:197–206

    Google Scholar 

  • Ding S, Su P (2010) Effects of tree shading on maize crop within a Poplar-maize compound system in Hexi Corridor oasis, northwestern China. Agrofor Syst 80:117–129. doi:10.1007/s10457-010-9287-x

    Article  Google Scholar 

  • Dupraz C (2005) From silvopastoral to silvoarable systems in Europe: sharing concepts, unifying policies. In: Mosquera-Losada R, McAdam J, Riguerio-Rodrigues A (eds) Silvopastoralism and sustainable land management. CAB International, Wallingford, p 432

    Google Scholar 

  • Dupraz C, Simorte V, Dauzat M, Bertoni G, Bernadac A, Masson P (1999) Growth and nitrogen status of young walnuts as affected by intercropped legumes in a Mediterranean climate. Agrofor Syst 43:71–80. doi:10.1023/A:1026499103899

    Article  Google Scholar 

  • Eichhorn MP, Paris P, Herzog F, Incoll LD, Liagre F, Mantzanas K, Mayus M, Moreno G, Papanastasis VP, Pilbeam DJ, Pisanelli A, Dupraz C (2006) Silvoarable systems in Europe—past, present and future prospects. Agrofor Syst 67:29–50. doi:10.1007/s10457-005-1111-7

    Article  Google Scholar 

  • Ericsson T (1994) Nutrient cycling in energy forest plantations. Biomass Bioenerg 6:115–121. doi:10.1016/0961-9534(94)90090-6

    Article  CAS  Google Scholar 

  • European Commission (2010) The CAP towards 2020: meeting the food, natural resources and territorial challenges of the future. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, COM (2010) 672 final, Brussels, p 15

  • Eyre MD, Labanowska-Bury D, Avayanos JG, White R, Leifert C (2009) Ground beetles (Coleoptera, Carabidae) in an intensively managed vegetable crop landscape in eastern England. Agric Ecosyst Environ 131:340–346. doi:10.1016/j.agee.2009.02.006

    Article  Google Scholar 

  • Fernández M, Gyenge J, Licata J, Schlichter T, Bond B (2008) Belowground interactions for water between trees and grasses in a temperate semiarid agroforestry system. Agrofor Syst 74:185–197. doi:10.1007/s10457-008-9119-4

    Article  Google Scholar 

  • Freese D, Böhm C, Quinkenstein A, Hüttl RF (2009) Assessment of ecosystem services provided by agroforestry systems in Europe. 2nd world congress of agroforestry—book of abstracts, World Agroforestry Centre, pp 20–22

  • Freese D, Böhm C, Quinkenstein A, Schneider BU, Hüttl RF (2010) Agroforst—flächenschonende Alternative für die Energieholzproduktion (Feld und Wald auf einem Schlag). Neue Landwirtschaft 9:76–78

    Google Scholar 

  • Fry DA, Slater FM (2011) Early rotation short rotation willow coppice as a winter food resource for birds. Biomass Bioenerg 35(7):2545–2553. doi:10.1016/j.biombioe.2011.02.016

    Article  Google Scholar 

  • Garrity DP (2004) Agroforestry and the achievement of the millennium development goals. Agrofor Syst 61:5–17

    Article  Google Scholar 

  • Gillespie AR, Jose S, Mengel DB, Hoover WL, Pope PE, Seifert JR, Biehle DJ, Stall T, Benjamin TJ (2000) Defining competition vectors in a temperate alley cropping system in the midwestern USA 1. Production physiology. Agrofor Syst 48:25–40

    Article  Google Scholar 

  • Gold MA, Hanover JW (1987) Agroforestry systems for the temperate zone. Agrofor Syst 5:109–121. doi:10.1007/BF00047516

    Article  Google Scholar 

  • Goodlass G, Green M, Hilton B, McDonough S (2007) Nitrate leaching from short-rotation coppice. Soil Use Manag 23:178–184. doi:10.1111/j.1475-2743.2006.00080.x

    Article  Google Scholar 

  • Graves AR, Burgess PJ, Palma JHN, Herzog F, Moreno G, Bertomeu M, Dupraz C, Liagre F, Keesman K, van der Werf W, de Koeffeman Nooy A, van den Briel JP (2007) Development and application of bio-economic modeling to compare silvoarable, arable, and forestry systems in three European countries. Ecol Eng 29:434–449

    Article  Google Scholar 

  • Graves AR, Burgess KJ, Palma JHN, Keesman KJ, van der Werf W, Dupraz C, van Keulen H, Herzog FH, Mayus M (2010) Implementation and calibration of the parameter-sparse Yield-SAFE model to predict production and land equivalent ratio in mixed tree and crop system under two contrasting production situations in Europe. Ecol Model 221:1744–1756

    Article  Google Scholar 

  • Grogan P, Matthews R (2001) Review of the potential for soil carbon sequestration under bioenergy crops in the UK. Science Report. Cranfield University, pp 38

  • Grünewald H, Brandt BKV, Schneider BU, Oliver B, Kendzia G, Hüttl RF (2007) Agroforestry systems for the production of woody biomass for energy transformation purposes. Ecol Eng 29(4):319–328. doi:10.1016/j.ecoleng.2006.09.012

    Article  Google Scholar 

  • Grünewald H, Böhm C, Bärwolff M, Wöllecke J, Quinkenstein A, Schwarz K-U, Hoffmann J (2009a) Ökologische Aspekte von Agroforstsystemen 2. Symposium Energiepflanzen 2009 abgehalten in Berlin am 17.–18. November, Fachagentur für Nachwachsende Rohstoffe (FNR), pp 233–263

  • Grünewald H, Böhm C, Quinkenstein A, Grundmann P, Eberts J, von Wühlisch G (2009b) Robinia pseudoacacia L.: a lesser known tree species for biomass production. Bioenergy Res 2:123–133. doi:10.1007/s12155-009-9038-x

    Article  Google Scholar 

  • Hall DO (1997) Biomass energy in industrialised countries—a view of the future. For Ecol Manag 91:17–45. doi:10.1016/S0378-1127(96)03883-2

    Article  Google Scholar 

  • Heilman P, Norby RJ (1998) Nutrient cycling and fertility management in temperate short rotation forest systems. Biomass Bioenerg 14:361–370. doi:10.1016/S0961-9534(97)10072-1

    Article  CAS  Google Scholar 

  • Herzog F (2000) The importance of perennial trees for the balance of northern European agricultural landscapes. Unasylva 200:42–48

    Google Scholar 

  • Hill D, Webster T (1995) Apiculture and forestry (bees and trees). Agrofor Syst 29:313–320. doi:10.1007/BF00704877

    Article  Google Scholar 

  • Hofmann-Schielle C, Jug A, Makeschin F, Rehfuess KE (1999) Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany: I. Site-growth relationships. For Ecol Manag 121:41–55. doi:10.1016/S0378-1127(98)00555-6

    Article  Google Scholar 

  • Hohenstein WG, Wright LL (1994) Biomass energy production in the United States: an overview. Biomass Bioenerg 6:161–173

    Article  Google Scholar 

  • Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268. doi:10.1016/j.geoderma.2006.09.003

    Article  CAS  Google Scholar 

  • Jørgensen U, Hansen EM (1998) Nitrate leaching from miscanthus, willow, grain crops and rape. In: Wörgetter M (ed.) Proceedings of the international workshop on environmental aspects of energy crop production, Brasimone, October 9–10, 1997, Wieselburg BLT, pp 207–218

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76:1–10. doi:10.1007/s10457-009-9229-7

    Article  Google Scholar 

  • Jose S, Gillespie AR, Seifert JR, Mengel DB, Pope PE (2000a) Defining competition vectors in a temperate alley cropping system in the midwestern USA: 3. Competition for nitrogen and litter decomposition dynamics. Agrofor Syst 48:61–77. doi:10.1023/A:1006241406462

    Article  Google Scholar 

  • Jose S, Gillespie AR, Seifert JR, Biehle DJ (2000b) Defining competition vectors in a temperate alley cropping system in the midwestern USA: 2. Competition for water. Agrofor Syst 48:41–59. doi:10.1023/A:1006289322392

    Article  Google Scholar 

  • Jose S, Gillespie AR, Pallardy SG (2004) Interspecific interactions in temperate agroforestry. Agrofor Syst 61:237–255. doi:10.1023/B:AGFO.0000029002.85273.9b

    Article  Google Scholar 

  • Kaeser A, Sereke F, Dux D, Herzog F (2011) Agroforestry in Switzerland. Agrarforschung Schweiz 2:128–133

    Google Scholar 

  • Kang H, Shannon DA, Prior SA, Arriaga FJ (2008) Hedgerow pruning effects on light interception, water relations and yield in alley-cropped maize. J Sustain Agric 31:115–137

    Article  Google Scholar 

  • King E (1970) Ökologisch-meteorologische Untersuchungen an Windschutzstreifen im nassen Sommer 1968. Agric Meteorol 7:235–253. doi:10.1016/0002-1571(70)90019-1

    Article  Google Scholar 

  • Klaa K, Mill PJ, Incoll LD (2005) Distribution of small mammals in a silvoarable agroforestry system in Northern England. Agrofor Syst 63:101–110. doi:10.1007/s10457-004-1110-0

    Article  Google Scholar 

  • Köhler K, Duynisveld WHM, Böttcher J (2006) Nitrogen fertilization and nitrate leaching into groundwater on arable sandy soils. J Plant Nutr Soil Sci 169:185–195. doi:10.1002/jpln.200521765

    Article  CAS  Google Scholar 

  • Kort J (1988) Benefits of windbreaks to field and forage crops. Agric Ecosyst Environ 22(23):165–190. doi:10.1016/0167-8809(88)90017-5

    Article  Google Scholar 

  • Kort J, Collins M, Ditsch D (1998) A review of soil erosion potential associated with biomass crops. Biomass Bioenerg 14:351–359. doi:10.1016/S0961-9534(97)10071-X

    Article  Google Scholar 

  • Kumar S, Anderson SH, Udawatta RP, Gantzer CJ (2010) CT-measured macropores as affected by agroforestry and grass buffers for grazed pasture systems. Agrofor Syst 79:59–65. doi:10.1007/s10457-009-9264-4

    Article  Google Scholar 

  • Kuznetsova T, Lukjanova A, Mandre M, Lõhmus K (2011) Aboveground biomass and nutrient accumulation dynamics in young black alder, silver birch and Scots pine plantations on reclaimed oil shale mining areas in Estonia. For Ecol Manag 262:56–64. doi:10.1016/j.foreco.2010.09.030

    Article  Google Scholar 

  • Lasch P, Kollas C, Rock J, Suckow F (2010) Potentials and impacts of short-rotation coppice plantation with aspen in Eastern Germany under conditions of climate change. Reg Environ Chang 10:83–94. doi:10.1007/s10113-009-0095-7

    Article  Google Scholar 

  • Lee KH, Isenhart TM, Schultz RC (2003) Sediment and nutrient in an established multi-species riparian buffer. J Soil Water Conserv 58:1–8

    Google Scholar 

  • Lefroy EC, Stirzaker RJ (1999) Agroforestry for water management in the cropping zone of southern Australia. Agrofor Syst 45:277–302

    Article  Google Scholar 

  • Lehmann J, Schroth G (2003) Nutrient leaching. In: Schroth G, Sinclair FL (eds) Trees, crops and soil fertility. CAB International, Wallingford, pp 151–166

    Google Scholar 

  • Liesebach M, von Wühlisch G, Muhs HJ (1999) Aspen for short-rotation coppice plantations on agricultural sites in Germany: effects of spacing and rotation time on growth and biomass production of aspen progenies. For Ecol Manag 121:25–39

    Article  Google Scholar 

  • Linderson M, Iritz Z, Lindroth A (2007) The effect of water availability on stand level productivity, transpiration, water use efficiency and radiation use efficiency of field-grown willow clones. Biomass Bioenerg 31:460–468

    Article  Google Scholar 

  • Lindroth A, Bath A (1999) Assessment of regional willow coppice yield in Sweden on basis of water availability. For Ecol Manag 121:57–65

    Article  Google Scholar 

  • Mann L, Tolbert V (2000) Soil sustainability in renewable biomass plantings. Ambio 29:492–498

    Google Scholar 

  • Marshall EJP, Brown VK, Boatman ND, Lutman PJW, Squire GR, Ward LK (2003) The role of weeds in supporting biological diversity within crop fields. Weed Res 43:77–89. doi:10.1046/j.1365-3180.2003.00326.x

    Article  Google Scholar 

  • Matos ES (2010) Organic carbon dynamics in soils under different land use systems. PhD Thesis, Faculty of Environmental Sciences and Process Engineering, Brandenburg University of Technology, pp 91

  • McAdam JH, Burgess PG, Graves AR, Rigueiro-Rodríguez A, Mosquera-Losada MR (2009) Classifications and functions of agroforestry systems in Europe. In: Rigueiro-Rodríguez A, McAdam JH, Mosquera-Losada MR, Mosquera-Losada MR (eds) Agroforestry in Europe: current status and future prospects. Springer, Netherlands, pp 21–42. doi:10.1007/978-1-4020-8272-6_2

    Google Scholar 

  • McNaughton KG (1988) Effects of windbreaks on turbulent transport and microclimate. Agric Ecosyst Environ 22(23):17–39. doi:10.1016/0167-8809(88)90006-0

    Article  Google Scholar 

  • Mead R, Willey RW (1980) “The concept of a land equivalent ratio” and advantages in yields from intercropping. Exp Agric 16:217–228

    Article  Google Scholar 

  • Meiresonne L, Schrijver AD, Vos B (2007) Nutrient cycling in a poplar plantation (Populus trichocarpa × Populus deltoïdes ‘Beaupré’) on former agricultural land in northern Belgium. Can J For Res 37:141–155

    Article  CAS  Google Scholar 

  • Merckx T, Feber RE, Mclaughlan C, Bourn NAD, Parsons MS, Townsend MC, Riordan P, Macdonald DW (2010) Shelter benefits less mobile moth species: the field-scale effect of hedgerow trees. Agric Ecosyst Environ 138:147–151. doi:10.1016/j.agee.2010.04.010

    Article  Google Scholar 

  • Miller AW, Pallardy SG (2001) Resource competition across the crop-tree interface in a maize-silver maple temperate alley cropping stand in Missouri. Agrofor Syst 53:247–259. doi:10.1023/A:1013327510748

    Article  Google Scholar 

  • Mortensen J, Nielsen KH, Jørgensen U (1998) Nitrate leaching during establishment of willow (Salix viminalis) on two soil types and at two fertilization levels. Biomass Bioenerg 15:457–466. doi:10.1016/S0961-9534(98)00056-7

    Article  CAS  Google Scholar 

  • Mungai NW, Motavalli PP, Kremer RJ (2006) Soil organic carbon and nitrogen fractions in temperate alley cropping systems. Commun Soil Sci Plant 37:977–992. doi:10.1080/00103620600584230

    Article  CAS  Google Scholar 

  • Nair PKR (1993a) Agroforestry in the temperate zone. In: Nair PKR (ed) An introduction to agroforestry, Kluwer Academic Publishers, Dordrecht, pp 443–468

  • Nair PKR (1993b) Soil conservation. In: Nair PKR (ed) An introduction to agroforestry, Kluwer Academic Publishers, Dordrecht, pp 325–346

  • Nair PKR (2011) Agroforestry systems and environmental quality: introduction. J Environ Qual 40:784–790. doi:10.2134/jeq2011.0076

    Article  PubMed  CAS  Google Scholar 

  • Nair VD, Graetz DA (2004) Agroforestry as an approach to minimizing nutrient loss from heavily fertilized soils: the Florida experience. Agrofor Syst 61:269–279. doi:10.1023/B:AGFO.0000029004.03475.1d

    Article  Google Scholar 

  • Narain P, Singh RK, Sindhwal NS, Joshie P (1998) Water balance and water use efficiency of different land uses in western Himalayan valley region. Agric Water Manag 37:225–240. doi:10.1016/S0378-3774(98)00047-X

    Article  Google Scholar 

  • Nii-Annang S, Grünewald H, Freese D, Hüttl RF, Dilly O (2009) Microbial activity, organic C accumulation and 13C abundance in soils under alley cropping systems after 9 years of recultivation of quaternary deposits. Biol Fert Soils 45:531–538. doi:10.1007/s00374-009-0360-4

    Article  CAS  Google Scholar 

  • Ntayombya P, Gordon A (1995) Effects of black locust on productivity and nitrogen nutrition of intercropped barley. Agrofor Syst 29:239–254. doi:10.1007/BF00704871

    Article  Google Scholar 

  • Nuberg IK (1998) Effect of shelter on temperate crops: a review to define research for Australian conditions. Agrofor Syst 41:3–34. doi:10.1023/A:1006071821948

    Article  Google Scholar 

  • Nyakatawa EZ, Mays DA, Tolbert VR, Green TH, Bingham L (2006) Runoff, sediment, nitrogen, and phosphorus losses from agricultural land converted to sweetgum and switchgrass bioenergy feedstock production in north Alabama. Biomass Bioenerg 30:655–664. doi:10.1016/j.biombioe.2006.01.008

    Article  CAS  Google Scholar 

  • Öberg S, Mayr S, Dauber J (2008) Landscape effects on recolonisation patterns of spiders in arable fields. Agric Ecosyst Environ 123:211–218. doi:10.1016/j.agee.2010.07.018

    Article  Google Scholar 

  • Oelbermann M, Voroney RP (2007) Carbon and nitrogen in a temperate agroforestry system: using stable isotopes as a tool to understand soil dynamics. Ecol Eng 29:342–349. doi:10.1016/j.ecoleng.2006.09.014

    Article  Google Scholar 

  • Ouin A, Paillat G, Butet A, Burel F (2000) Spatial dynamics of wood mouse (Apodemus sylvaticus) in an agricultural landscape under intensive use in the Mont Saint Michel Bay (France). Agric Ecosyst Environ 78:159–165. doi:10.1016/S0167-8809(99)00119-X

    Article  Google Scholar 

  • Palma JHN, Graves AR, Burgess KJ, Keesman KJ, van Keulen H, Mayus M, Reisner Y, Herzog F (2007) Methodological approach for the assessment of environmental effects of agroforestry at the landscape scale. Ecol Eng 29:450–462. doi:10.1016/j.ecoleng.2006.09.016

    Article  Google Scholar 

  • Peichl M, Thevathasan N, Gordon A, Huss J, Abohassan R (2006) Carbon sequestration potentials in temperate tree-based intercropping systems, southern Ontario, Canada. Agrofor Syst 66:243–257. doi:10.1007/s10457-005-0361-8

    Article  Google Scholar 

  • Peng RK, Sutton SL (1996) The activity and diversity of ground arthropods in an agroforestry system. In: Proceedings of the 49th New Zealand plant protection conference, pp 309–313

  • Perry CH, Miller RC, Brooks KN (2001) Impacts of short-rotation hybrid poplar plantations on regional water yield. For Ecol Manag 143:143–151. doi:10.1016/S0378-1127(00)00513-2

    Article  Google Scholar 

  • Pimentel D, Krummel J (1987) Biomass energy and soil erosion: assessment of resource costs. Biomass 14:15–38

    Article  Google Scholar 

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6:317–327. doi:10.1046/j.1365-2486.2000.00308.x

    Article  Google Scholar 

  • Pretzschel M, Bohme G, Krause H (1991) Effects of shelterbelts on crop yield. Feldwirtschaft 32:229–231

    Google Scholar 

  • Quinkenstein A, Wöllecke J, Böhm C, Grünewald H, Freese D, Schneider BU, Hüttl RF (2009) Ecological benefits of the alley cropping agroforestry system in sensitive regions of Europe. Environ Sci Policy 12:1112–1121. doi:10.1016/j.envsci.2009.08.008

    Article  Google Scholar 

  • Quinkenstein A, Böhm C, Matos E, Freese D, Hüttl RF (2011) Assessing the carbon sequestration in short rotation coppice systems of Robinia pseudoacacia on marginal sites in NE-Germany. In: Kumar BM, Nair PKR (eds) Carbon sequestration potential of agroforestry systems—opportunities and challenges. Springer, New York. Adv Agrofor, vol 8, pp 201–216. doi: 10.1007/978-94-007-1630-8_11

  • Rédei K, Osváth-Bujtás Z, Veperdi I (2008) Black locust (Robinia pseudoacacia L.) improvement in Hungary: a review. Acta Silvatica et Lignaria Hungarica 4:127–132

    Google Scholar 

  • Reeg T (2011) Agroforestry systems as land use alternatives in Germany? A comparison with approaches taken in other countries. Outlook Agric 40:45–50. doi:10.5367/oa.2011.0032

    Article  Google Scholar 

  • Reichenberger S, Bach M, Skitschak A, Frede H-G (2007) Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness: a review. Sci Total Environ 384:1–35. doi:10.1016/j.scitotenv.2007.04.046

    Article  PubMed  CAS  Google Scholar 

  • Reisner Y, de Filippi R, Herzog F, Palma J (2007) Target regions for silvoarable agroforestry in Europe. Ecol Eng 29:401–418. doi:10.1016/j.ecoleng.2006.09.020

    Article  Google Scholar 

  • Reynolds PE, Simpson JA, Thevathasan NV, Gordon AM (2007) Effects of tree competition on corn and soybean photosynthesis, growth, and yield in a temperate tree-based agroforestry intercropping system in southern Ontario, Canada. Ecol Eng 29:362–371. doi:10.1016/j.ecoleng.2006.09.024

    Article  Google Scholar 

  • Rivest D, Cogliastro A, Bradley RL, Oliver A (2010) Intercropping hybrid poplar with soybean increases soil microbial biomass, mineral N supply and tree growth. Agrofor Syst 80:33–40. doi:10.1007/s10457-010-9342-7

    Article  Google Scholar 

  • Röhricht C, Ruscher K, Eckhard F, Zöphel B, Hussein I (2010) Anlage von Winschutzstreifen mit schnellwachsenden Baumarten (Nutzen und schützen). Neue Landwirtschaft 6:76–79

    Google Scholar 

  • Rowe RL, Hanley ME, Goulson D, Clarke DJ, Doncaster CP, Taylor G (2011) Potential benefits of commercial willow Short Rotation Coppice (SRC) for farm-scale plant and invertebrate communities in the agri-environment. Biomass Bioenerg 35:325–336. doi:10.1016/j.biombioe.2010.08.046

    Article  Google Scholar 

  • Rumberger M, Münzenberger B, Bens O, Ehrig F, Lentzsch P, Hüttl R (2004) Changes in diversity and storage function of ectomycorrhiza and soil organoprofile dynamics after introduction of beech into Scots pine forests. Plant Soil 264:111–126

    Article  CAS  Google Scholar 

  • Ryszkowski L, Kędziora A (2007) Modification of water flows and nitrogen fluxes by shelterbelts. Ecol Eng 29:388–400. doi:10.1016/j.ecoleng.2006.09.023

    Article  Google Scholar 

  • Sanderson FJ, Kloch A, Sachanowicz K, Donald PF (2009) Predicting the effects of agricultural change on farmland bird populations in Poland. Agric Ecosyst Environ 129:37–42. doi:10.1016/j.agee.2008.07.001

    Article  Google Scholar 

  • Scholten H (1988) Snow distribution on crop fields. Agric Ecosyst Environ 22/23:363–380. doi:10.1016/0167-8809(88)90032-1

    Article  Google Scholar 

  • Scholz V, Hellebrand HJ, Höhn A (2004) Energetische und ökologische Aspekte der Feldholzproduktion. In: Scholz V (eds) Energieholzproduktion in der Landwirtschaft—Potenzial, Anbau, Technologie, Ökologie und Ökonomie. Bornimer Agrartechnische Berichte 35, Institut für Agrartechnik Bornim e. V., pp 15–32

  • Schoonover J, Williard K, Zaczek J, Mangun J, Carver A (2005) Nutrient attenuation in agricultural surface runoff by riparian buffer zones in Southern Illinois, USA. Agrofor Syst 64:169–180. doi:10.1007/s10457-004-0294-7

    Article  Google Scholar 

  • Schoonover J, Williard K, Zaczek J, Mangun J, Carver A (2006) Agricultural sediment reduction by giant cane and forest riparian buffers. Water Air Soil Poll 169:303–315. doi:10.1007/s11270-006-3111-2

    Article  CAS  Google Scholar 

  • Schroeder P (1993) Agroforestry systems: integrated land use to store and conserve carbon. Clim Res 3:53–60

    Article  Google Scholar 

  • Schulz S, Brauner O, Gruß H (2009) Animal diversity on short-rotation coppices—a review. Landbauforschung—vTI. Agric For Res 3:171–182

    Google Scholar 

  • Schulze E-D (2006) Biological control of the terrestrial carbon sink. Biogeoscience 3(2):147–166. doi:10.5194/bg-3-147-2006

    Article  CAS  Google Scholar 

  • Seiter S, Horwath WR (1999) The fate of tree root and pruning nitrogen in a temperate climate alley cropping system determined by tree-injected 15N. Biol Fert Soils 30:61–68. doi:10.1007/s003740050588

    Article  CAS  Google Scholar 

  • Seiter S, William RD, Hibbs DE (1999) Crop yield and tree-leaf production in three planting patterns of temperate-zone alley cropping in Oregon, USA. Agrofor Syst 46:273–288. doi:10.1023/A:1006204018212

    Article  Google Scholar 

  • Semere T, Slater FM (2007a) Invertebrate populations in miscanthus (Miscanthus × giganteus) and reed canary-grass (Phalaris arundinacea) fields. Biomass Bioenerg 31:30–39. doi:10.1016/j.biombioe.2006.07.002

    Article  Google Scholar 

  • Semere T, Slater FM (2007b) Ground flora, small mammal and bird species diversity in miscanthus (Miscanthus × giganteus) and reed canary-grass (Phalaris arundinacea) fields. Biomass Bioenerg 31:20–29. doi:10.1016/j.biombioe.2006.07.001

    Article  Google Scholar 

  • Slazak A, Freese D, Matos ES, Hüttl RF (2010) Soil organic phosphorus fraction in pine-oak forest stands in Northeastern Germany. Geoderma 158:156–162. doi:10.1016/j.geoderma.2010.04.023

    Article  CAS  Google Scholar 

  • Smith P, Milne R, Powlson DS, Smith JU, Falloon P, Coleman K (2000) Revised estimates of the carbon mitigation potential of UK agricultural land. Soil Use Manag 16:293–295. doi:10.1111/j.1475-2743.2000.tb00214.x

    Article  Google Scholar 

  • Ssekabembe CK, Henderlong PR, Larson M (1994) Soil moisture relations at the tree/crop interface in black locust alleys. Agrofor Syst 25:135–140. doi:10.1007/BF00705673

    Article  Google Scholar 

  • Stamps WT, Woods TW, Linit MJ, Garrett HE (2002) Arthropod diversity in alley cropped black walnut (Juglans nigra L.) stands in eastern Missouri, USA. Agrofor Syst 56:167–175. doi:10.1023/A:1021319628004

    Article  Google Scholar 

  • Surböck A, Faustmann P, Heinzinger M, Friedel JK, Klick A, Freyer B (2005) Auswirkungen einer Hecke auf Bodenwasserhaushalt, Bodenparameter und Ertrag in angrenzenden Ackerflächen. Mitteilungen der Gesellschaft für Pflanzenbauwissenschaften 17:20–21

    Google Scholar 

  • Szczukowski S, Tworkowski J, Klasa A, Stolarski M (2002) Productivity and chemical composition of wood tissues of short rotation willow coppice cultivated on arable land. Rostlinná Výroba 48:413–417

    Google Scholar 

  • Thevathasan NV, Gordon AM (1995) Moisture and fertility interactions in a potted poplar-barley intercropping. Agrofor Syst 29:275–283. doi:10.1007/BF00704874

    Article  Google Scholar 

  • Thevathasan NV, Gordon AM (1997) Poplar leaf biomass distribution and nitrogen dynamics in a poplar-barley intercropped system in southern Ontario, Canada. Agrofor Syst 37:79–90. doi:10.1023/A:1005853811781

    Article  Google Scholar 

  • Thevathasan NV, Gordon AM (2004) Ecology of tree intercropping systems in the North temperate region: experiences from southern Ontario, Canada. Agrofor Syst 61–62:257–268. doi:10.1023/B:AGFO.0000029003.00933.6d

    Article  Google Scholar 

  • Thornton FC, Joslin DJ, Boc BR, Houston A, Green TH, Schoenholtz S, Pettry D, Tyler DD (1998) Environmental effects of growing woody crops on agricultural land: first year effects on erosion, and water quality. Biomass Bioenerg 15:57–69. doi:10.1016/S0961-9534(97)10053-8

    Article  CAS  Google Scholar 

  • Udawatta RP, Jose S (2011) Carbon sequestration potential of agroforestry practices in temperate North America. In: Kumar BM, Nair PKR (eds) Carbon sequestration potential of agroforestry systems—opportunities and challenges. Springer, New York. Adv Agrofor, vol 8, pp 17–42. doi: 10.1007/978-94-007-1630-8_2

  • Udawatta RP, Krstansky JJ, Henderson GS, Garrett HE (2002) Agroforestry practices, runoff, and nutrient loss: a paired watershed comparison. J Environ Qual 31:1214–1222

    Article  PubMed  CAS  Google Scholar 

  • Updegraff K, Gowda P, Mulla DJ (2004) Watershed-scale modeling of the water quality effects of cropland conversion to short-rotation woody crops. Renew Agric Food Syst 19:118–127. doi:10.1079/RAFS200472

    Article  Google Scholar 

  • Uri V, Tullus H, Lõhmus K (2002) Biomass production and nutrient accumulation in short-rotation grey alder (Alnus incana (L.) Moench) plantation on abandoned agricultural land. For Ecol Manag 161:169–179. doi:10.1016/S0378-1127(01)00478-9

    Article  Google Scholar 

  • Uri V, Lõhmus K, Mander Ü, Ostonen I, Aosaar J, Maddison M, Helmisaari H-S, Augustin J (2011) Long-term effects on the nitrogen budget of a short-rotation grey alder (Alnus incana (L.) Moench) forest on abandoned agricultural land. Ecol Eng 37(6):920–930. doi:10.1016/j.ecoleng.2011.01.016

    Article  Google Scholar 

  • van Miegroet H, Norby R, Tschaplinski TJ (1994) Nitrogen fertilization strategies in a short-rotation sycamore plantation. For Ecol Manag 64:13–24

    Article  Google Scholar 

  • van Noordwijk M, Lawson G, Soumaré A, Groot JJR, Hairiah K (1996) Root distribution of trees and crops: competition and/or complementarity. In: Ong CK, Huxley P (eds) Tree–crop interactions: a physiological approach. CAB International, Wallingford, pp 319–364

    Google Scholar 

  • Varcolla JM, Dunn JP (2001) Influence of hedgerow and grassy field borders on ground beetle (Coleoptera: Carabidae) activity in fields of corn. Agric Ecosyst Environ 83:153–163

    Article  Google Scholar 

  • Varella AC, Moot DJ, Pollock KM, Peri PL, Lucas RJ (2011) Do light and alfalfa responses to cloth slatted shade represent those measured under an agroforestry system? Agrofor Syst 81:157–173. doi:10.1007/s10457-010-9319-6

    Article  Google Scholar 

  • Vejre H, Hoppe C (1998) Distribution of Ca, K, Mg, and P in acid forest soils in plantations of Picea abies—evidence of the base-pump effect. Scand J For Res 13:265–273

    Article  Google Scholar 

  • Werner A, Vetter A, Hering T (2004) Ergebnisse des 10 jährigen Energieholzanbaus in Thüringen. In: Scholz V (eds) Energieholzproduktion in der Landwirtschaft—Potenzial, Anbau, Technologie, Ökologie und Ökonomie. Bornimer Agrartechnische Berichte 35, Institut für Agrartechnik Bornim e. V., pp 93–98

  • Williard KWJ, Dewalle DR, Edwards PAJ (2005) Influence of bedrock geology and tree species composition on stream nitrate concentrations in mid-appalachian forested watersheds. Water Air Soil Pollut 160:55–76

    Article  CAS  Google Scholar 

  • Wöllecke J, Elmer M (2008) Entwicklung biologischer Vielfalt in einer sich verändernden Agrarlandschaft. Treffpunkt Biologische Vielfalt VIII. Interdisziplinärer Forschungsaustausch im Rahmen des Übereinkommens über die biologische Vielfalt, pp 35–40

  • Woodcock BA, Redhead J, Vanbergen AJ, Hulmes L, Hulmes S, Peyton J, Nowakowski M, Pywell RF, Heard MS (2010) Impact of habitat type and landscape structure on biomass, species richness and functional diversity of ground beetles. Agric Ecosyst Environ 139:181–186. doi:10.1016/j.agee.2010.07.018

    Article  Google Scholar 

  • Wretenberg J, Pärt T, Berg A (2010) Changes in local species richness of farmland birds in relation to land-use changes and landscape structure. Biol Conserv 143:375–381. doi:10.1016/j.biocon.2009.11.001

    Article  Google Scholar 

  • Zamora DS, Jose S, Napolitano K (2009) Competition for 15N labeled nitrogen in a loblolly pine-cotton alley cropping system in the southeastern United States. Agric Ecosyst Environ 131:40–50. doi:10.1016/j.agee.2008.08.012

    Article  CAS  Google Scholar 

  • Zhang H, Morison JIL, Simmonds LP (1999) Transpiration and water relations of poplar trees growing close to the water table. Tree Physiol 19:563–573. doi:10.1093/treephys/19.9.563

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brandenburg Ministry of Science, Research and Culture (MWFK) as part of the International Graduate School at Brandenburg University of Technology (BTU). The authors thank Anna Slazak and Tanya Medinski for helpful comments as well as Kathy Brown (linguistic review).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penka Tsonkova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsonkova, P., Böhm, C., Quinkenstein, A. et al. Ecological benefits provided by alley cropping systems for production of woody biomass in the temperate region: a review. Agroforest Syst 85, 133–152 (2012). https://doi.org/10.1007/s10457-012-9494-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-012-9494-8

Keywords

Navigation