Skip to main content

Advertisement

Log in

Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

The advantages of associating shade trees in coffee agroforestry systems (AFS) are generally thought to be restricted mostly to poor soil and sub-optimal ecological conditions for coffee cultivation whereas their role in optimal conditions remains controversial. Thus, the objective of this study was to investigate, under the optimal coffee cultivation conditions of the Central Valley of Costa Rica, the impact of Inga densiflora, a very common shade tree in Central America, on the microclimate, yield and vegetative development of shaded coffee in comparison to coffee monoculture (MC). Maximum temperature of shaded coffee leaves was reduced by up to 5°C relative to coffee leaf temperature in MC. The minimum air temperature at night was 0.5°C higher in AFS than air temperature in MC demonstrating the buffering effects of shade trees. As judged by the lower relative extractable water (REW) in the deep soil layers during the dry season, water use in AFS was higher than in MC. Nevertheless, competition for water between coffee and associated trees was assumed to be limited as REW in the 0–150 cm soil layer was always higher than 0.3 in shaded coffee compared to 0.4 in monoculture. Coffee production was quite similar in both systems during the establishment of shade trees, however a yield decrease of 30% was observed in AFS compared to MC with a decrease in radiation transmittance to less than 40% during the latter years in the absence of an adequate shade tree pruning. As a result of the high contribution (60%) of shade trees to overall biomass, permanent aerial biomass accumulation in AFS amounted to two times the biomass accumulated in MC after 7 years. Thus provided an adequate pruning, Inga-shaded plantations appeared more advantageous than MC in optimal conditions, especially considering the fact that coffee AFS provides high quality coffee, farmers’ revenue diversification and environmental benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems. Agric Ecosyst Environ 99:15–27

    Article  CAS  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evaporation: guidelines for computing crop water requirements. FAO Irrigation and drainage paper No. 56. FAO, Rome, p 300

    Google Scholar 

  • Avelino J, Zelaya H, Merlo A, Pineda A, Ordoñez M, Savary S (2006) The intensity of a coffee rust epidemic is dependent on production situations. Ecol Model 197:431–447

    Article  Google Scholar 

  • Avelino J, Cabut S, Barboza B, Barquero M, Alfaro R, Esquivel C, Durand JF, Cilas C (2007) Topography and crop management are key factors for the development of American leaf spot epidemics on coffee in Costa Rica. Phytopathology 97:1532–1542

    Article  PubMed  Google Scholar 

  • Barradas VL, Fanjul L (1986) Microclimatic characterization of shaded and open-grown coffee (Coffea arabica) plantations in Mexico. Agric For Meteorol 38:101–112

    Article  Google Scholar 

  • Beer J (1987) Advantages, disadvantages and desirable characteristics of shade trees for coffee, cocoa and tea. Agrofor Syst 5:3–13

    Article  Google Scholar 

  • Beer J, Muschler RG, Kass D, Somarriba E (1998) Shade management in coffee and cacao plantations. Agrofor Syst 38:139–164

    Article  Google Scholar 

  • Cannel MGR (1985) Physiology of the coffee crop. In: Cliford NM, Wilson KC (eds) Coffee: botany, biochemistry and production of beans and beverage. Croom Helm, London, pp 108–134

    Google Scholar 

  • Cannell MRG (1975) Crop physiological aspects of coffee bean yield: a review. J Coffee Res 5:7–20

    Google Scholar 

  • Da Matta FM (2004) Ecophysiological constraints on the production of shaded and unshaded coffee: a review. Field Crops Res 86:92–114

    Google Scholar 

  • Da Matta FM, Maestri M (1997) Photoinhibition and recovery of photosynthesis in Coffea arabica and C. canephora. Photosynthetica 34(3):439–446

    Article  CAS  Google Scholar 

  • Dauzat J, Rapidel B, Berger A (2001) Simulation of leaf transpiration and sap flow in virtual plants: model description and application to a coffee plantation in Costa Rica. Agric For Meteorol 109:143–160

    Article  Google Scholar 

  • De Miguel SM, Harmand JM, Hergoualc’h K (2004) Cuantificacion del carbono almacenado en la biomasa aerea y el mantillo en sistemas agroforestales de cafe en el suroeste de Costa Rica. Agroforesteria en las Americas 41–42:98–104

    Google Scholar 

  • Dzib B, Vaast P, Harmand JM, Llandera T (2006) Manejo, almacenamiento de carbono e ingresos económicos obtenidos de árboles maderables en fincas cafetaleras de tres regiones contrastantes de Costa Rica. Agroforesteria en las Americas 10(41–42):44–53

    Google Scholar 

  • Fanjul L, Arreola RR, Mendez MPC (1985) Stomatal responses to environmental variables in shade and sun grown coffee plants in Mexico. Exp Agric 21(2):249–258

    Article  Google Scholar 

  • Feldhake CM (2001) Microclimate of a natural pasture under planted Robinia psueudoacacia in Central Appalachia, West Virginia. Agrofor Syst 53:297–303

    Article  Google Scholar 

  • Fernández CF, Muschler RG (1999) Aspectos de la sostenibilidad de los sistemas de cultivo de café en América Central. In: Bertrand B, Rapidel B (eds) Desafíos de la Caficultura Centroamericana. Editorial Agroamérica, San José, pp 69–96

    Google Scholar 

  • Franck N (2005) Effet de la charge en fruits et de l’ombrage sur l’assimilation carbonée, la croissance et la production du caféier (Coffea arabica L.). Thèse de Doctorat, ENSA, Montpellier, pp 175

  • Franck N, Vaast P, Génard M, Dauzat J (2006) Soluble sugars mediate sink feedback down–regulation of leaf photosynthesis of Coffea arabica in the field. Tree Physiol 26:517–525

    PubMed  CAS  Google Scholar 

  • Govindarajan M, Rao MR, Mathuva MN, Nair PKR (1996) Soil-water and root dynamic under hedgerow intercropping in semiarid Kenya. Agron J 88:513–520

    Article  Google Scholar 

  • Gutiérrez MV, Meinzer FC, Grantz DA (1994) Regulation of transpiration in coffee hedgerows: co-variation of environmental variables and apparent responses of stomata to wind and humidity. Plant Cell Environ 17:1305–1313

    Article  Google Scholar 

  • Guyot B, Manez JC, Perriot JJ, Giron J, Villain L (1996) Influence de l’altitude et de l’ombrage sur la qualité des cafés arabica. Plantation Recherche Development 3:272–280

    Google Scholar 

  • Harmand JM, Avila H, Dambrine E, Skiba U, De Miguel S, Renderos Duran RV, Oliver R, Jimenez F, Beer J (2007a) Nitrogen dynamics and soil nitrate retention in a Coffea arabica - Eucalyptus deglupta agroforestry system in Southern Costa Rica. Biogeochemistry 85(2):125–139

    Article  CAS  Google Scholar 

  • Harmand JM, Chaves V, Avila H, Cannavo P, Dionisio L, Crouzet G, Zeller B, Vaast P, Oliver R, Dambrine E (2007b) Nitrogen dynamics and nitrate leaching in Coffea arabica systems in Costa Rica according to site conditions, fertilization and shade management. Proceedings of the 21st International Congress on Coffee Research, Montpellier. ASIC, Paris, pp 1071–1074

    Google Scholar 

  • Henríquez C, Cabalceta G (1999) Guía práctica para el estudio introductorio de los suelos con un enfoque agrícola. ACCS (Asociación Costarricense de la Ciencia del Suelo), San José

    Google Scholar 

  • Howard S, Ong C, Black C, Khan A (1996) Using sap flow gauges to quantify water uptake by tree roots from beneath the crop rooting zone in agroforestry systems. Agrofor Syst 35:15–29

    Article  Google Scholar 

  • ICAFE (Instituto del Café de Costa Rica) (1998) Manual para recomendaciones para el cultivo del café. ICAFE-CICAFE, Heredia, p 193

    Google Scholar 

  • ICO (International Coffee Organization) (2008) http://www.ico.org/

  • Kumar D, Tieszen LL (1980) Photosynthesis in Coffea arabica. I Effects of light and temperature. Exp Agric 16:13–19

    Article  CAS  Google Scholar 

  • Martius C, Höfer H, Garcia MVB, Römbke J, Förster B, Hanagarth W (2004) Microclimate in agroforestry in Central Amazonia: does canopy closure matter to soil organisms? Agrofor Syst 60:291–304

    Article  Google Scholar 

  • Mata RA, Ramirez JE (1999) Estudio de caracterización de suelos y su relación con el manejo del cultivo de café en la provincia de Heredia. ICAFE, San Jose, p 92

    Google Scholar 

  • Matoso Campanha M, Silva Santos RH, de Freitas GB, Prieto Martinez HE, Ribeiro Garcia SL, Finger FL (2004) Growth and yield of coffee plants in agroforestry and monoculture systems in Minas Gerais, Brazil. Agrofor Syst 63:75–83

    Google Scholar 

  • McIntyre BD, Riha SJ, Ong CK (1997) Competition for water in a hedge-intercrop system. Field Crops Res 52:151–160

    Article  Google Scholar 

  • Murphy RJ, Yau PY (1998) Calorific value, basic density and ash content of Inga species. In: Pennington TD, Fernández ECM (eds) The genus Inga: utilization. Royal Botanic Gardens, Kew, pp 29–39

    Google Scholar 

  • Muschler RG (1997) Tree-crop compatibility in Agroforestry: production and quality of coffee grown under managed tree shade in Costa Rica. PhD Thesis, University of Florida, Gainesville, pp 219

  • Muschler RG (1999) Árboles en cafetales. Proyecto agroforestal CATIE/GTZ. Modulo de enseñanza No. 5. CATIE/GTZ, Turrialba, p 60

    Google Scholar 

  • Muschler RG, Bonnemann A (1997) Potentials and limitations of agroforestry for changing land-use in the tropics: experiences from Central America. For Ecol Manag 91:61–73

    Article  Google Scholar 

  • Ong CK, Black CR, Wallace JS, Khan AAH, Lott JE, Jackson NA, Howard SB, Smith DM (2000) Productivity, microclimate and water use in Grevillea robusta-based agroforestry systems on hill slopes in semi-arid Kenya. Agric Ecosyst Environ 80:121–141

    Article  Google Scholar 

  • Pearson T, Walker S, Brown S (2005) Sourcebook for land use, land-use change and forestry projects. Biocarbon Fund and Winrock International. Available at: http://www.winrock.org/ecosystems/files/Winrock-BioCarbon_Fund_Sourcebook-compressed.pdf

  • Pennington TD (1998) Growth and biomass of Inga species. In: Pennington TD, Fernández ECM (eds) The genus Inga: utilization. Royal Botanic Gardens, Kew, pp 15–28

    Google Scholar 

  • Perfecto I, Rice R, Greenberg R, van der Voort ME (1996) Shade coffee: a disappearing refuge for biodiversity. Bioscience 46(8):598–608

    Article  Google Scholar 

  • Rao MR, Nair PKR, Ong CK (1998) Biophysical interactions in tropical agroforestry systems. Agrofor Syst 38:3–50

    Article  Google Scholar 

  • Schaller M, Schroth G, Beer J, Jimenez F (2003) Species and site characteristics that permit the association of fast-growing trees with crops; the case of Eucalyptus deglupta as coffee shade in Costa Rica. For Ecol Manag 175:205–215

    Article  Google Scholar 

  • Siles P (2007) Hydrological processes (water use and balance) in a coffee (Coffea arabica L.) monoculture and a coffee plantation shaded by Inga densiflora in Costa Rica. PhD Thesis Dissertation. Université Henri Poincaré, Nancy, p 160

  • Soto-Pinto L, Perfecto I, Castillo-Hernandez J, Caballero-Nieto J (2000) Shade effect on coffee production at the northern Tzeltal zone of the state of Chiapas, Mexico. Agric Ecosyst Environ 80:61–69

    Article  Google Scholar 

  • Staver C, Guharay F, Monterroso D, Muschler RG (2001) Designing pest-suppressive multistrata perennial crops systems: shade-grown coffee in Central America. Agrofor Syst 53:151–170

    Article  Google Scholar 

  • Suarez D, Segura M, Kanninen M (2004) Estimacion de la biomasa aerea total en arboles de sombra y plantas de café en sistemas agroforestales en Matagalpa, Nicaragua, usando modelos alometricos. Agroforesteria en las Americas 41–42:112–119

    Google Scholar 

  • Sumner ME, Miller WP (1996) Cation exchange capacity and exchange coefficients. In: Sparks DL (ed) Methods of soil analysis. Part 3: chemical methods, 3rd edn. SSSA and ASA, Madison, pp 1220–1221

    Google Scholar 

  • Tavares FC, Beer J, Jimenez F, Schroth G, Fonseca C (1999) Experiencia de agricultores de Costa Rica con la introducción de árboles maderables en plantaciones de café. Agroforesteria de las Américas 6(23):17–20

    Google Scholar 

  • Ting KC, Giacomelli GA (1987) Availability of Solar Photosynthetically Active Radiation. Transactions of the ASAE 30(5):1453–1457

    Google Scholar 

  • Vaast P, van Kanten R, Siles P, Dzib B, Franck N, Harmand JM, Génard M (2005a) Shade: a key factor for coffee sustainability and quality. Proceedings of the 20th International Congress on Coffee Research, Bangalore, India. ASIC, Paris, France, pp 887–896

  • Vaast P, Beer J, Harvey C, Harmand JM (2005b) Environmental services of coffee agroforestry systems in Central America: a promising potential to improve the livelihoods of coffee farmers’ communities. In: CATIE (ed) Intregrated management of environmental services in human—dominated tropical landscapes: IV Henri A. Wallace Inter-American Scientific Conference Series, Turrialba, pp 35–39

    Google Scholar 

  • Vaast P, Angrand J, Franck N, Dauzat J, Génard M (2005c) Fruit load and branch ring-barking affect carbon allocation and photosynthesis of leaf and fruit of Coffea arabica in field conditions. Tree Physiol 25:753–760

    PubMed  CAS  Google Scholar 

  • Vaast P, Bertrand B, Guyot B, Génard M (2006) Fruit thinning and shade influence bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. J. Sc. Food Agric 86:197–204

    Article  CAS  Google Scholar 

  • Vaast P, van Kanten R, Siles P, Angrand J, Aguilar A (2007a) Chapter 9. Biophysical interactions between timber trees and Arabica coffee in suboptimal conditions of Central America. In: José S, Gordon AM (eds) Towards agroforesty design: an ecological approach. Springer, Berlin, pp 135–148

    Google Scholar 

  • Vaast P, Salazar M, Martinez M, Boulay A, Harmand JM, Navarro G (2007b) Importance of tree revenues and incentives of the programme “Coffee-Practices” of Starbucks for coffee farmers in Costa Rica and Guatemala. Proceedings of the 21st International Congress on Coffee Research, ASIC, Montpellier, pp. 495–502

  • van Kanten RF, Vaast P (2006) Coffee and shade tree transpiration in suboptimal, low-altitude conditions of Costa Rica. Agrofor Syst 67:187–202

    Article  Google Scholar 

  • Verchot L, Mackensen J, Kandji S, van Noordwijk M, Tomich T, Ong C, Albrecht A, Bantilan C, Anupama K, Palm C (2005) Opportunities for linking adaptation and mitigation in agroforestry systems. In: Robledo C, Kanninen M, Pedroni L (eds) Tropical forests and adaptation to climate change- in search of synergies. Center for International Forestry Research (CIFOR), Bogor, p 186

    Google Scholar 

  • Viera JC, Köpesell E, Beer J, Lok R, Calvo G (1999) Incentivos financieros para establecer y manejar árboles maderables en cafetales. Agroforestería en las Américas 6(23):21–23

    Google Scholar 

  • Willey RW (1975) The use of shade in coffee, cocoa and tea. Hor Abstr 45(12):791–798

    Google Scholar 

  • Willson KC (1985) Mineral nutrition and fertilizer needs. In: Clifford NM, Willson KC (eds) Coffee: botany, biochemistry and production of beans and beverage. Croom Helm, London, pp 108–134

    Google Scholar 

  • Zamora N, Pennington T (2001) Guabas y guajiniquiles de Costa Rica (Inga spp.). Instituto Nacional de Biodiversidad, Heredia, p 197

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Coffee Institute of Costa Rica for facilitating the use and maintenance of the experimental plot on the research station of San Pedro de Barva and the European Commission (ICA-4-CT-2001-10071) for their financial support of the scientific equipment and field measurements performed within the framework of the CASCA project (Coffee Agroforestry in Central America).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Vaast.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siles, P., Harmand, JM. & Vaast, P. Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica. Agroforest Syst 78, 269–286 (2010). https://doi.org/10.1007/s10457-009-9241-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-009-9241-y

Keywords

Navigation