Skip to main content

Advertisement

Log in

Synergy between a collagen IV mimetic peptide and a somatotropin-domain derived peptide as angiogenesis and lymphangiogenesis inhibitors

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Angiogenesis is central to many physiological and pathological processes. Here we show two potent bioinformatically-identified peptides, one derived from collagen IV and translationally optimized, and one from a somatotropin domain-containing protein, synergize in angiogenesis and lymphangiogenesis assays including cell adhesion, migration and in vivo Matrigel plugs. Peptide-peptide combination therapies have recently been applied to diseases such as human immunodeficiency virus (HIV), but remain uncommon thus far in cancer, age-related macular degeneration and other angiogenesis-dependent diseases. Previous work from our group has shown that the collagen IV-derived peptide primarily binds β1 integrins, while the receptor for the somatotropin-derived peptide remains unknown. We investigate these peptides’ mechanisms of action and find both peptides affect the vascular endothelial growth factor (VEGF) pathway as well as focal adhesion kinase (FAK) by changes in phosphorylation level and total protein content. Blocking of FAK both through binding of β1 integrins and through inhibition of VEGFR2 accounts for the synergy we observe. Since resistance through activation of multiple signaling pathways is a central problem of anti-angiogenic therapies in diseases such as cancer, we suggest that peptide combinations such as these are an approach that should be considered as a means to sustain anti-angiogenic and anti-lymphangiogenic therapy and improve efficacy of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887. doi:10.1016/j.cell.2011.08.039

    Article  PubMed  CAS  Google Scholar 

  2. Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10(6):417–427. doi:10.1038/nrd3455

    Article  PubMed  CAS  Google Scholar 

  3. Cao Y, Arbiser J, D’Amato RJ, D’Amore PA, Ingber DE, Kerbel R, Klagsbrun M, Lim S, Moses MA, Zetter B, Dvorak H, Langer R (2011) Forty-year journey of angiogenesis translational research. Sci Transl Med 3(114):114rv113. doi:10.1126/scitranslmed.3003149

    Article  Google Scholar 

  4. Ebos JM, Kerbel RS (2011) Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol 8(4):210–221. doi:10.1038/nrclinonc.2011.21

    Article  PubMed  CAS  Google Scholar 

  5. Kerbel RS (2009) Issues regarding improving the impact of antiangiogenic drugs for the treatment of breast cancer. Breast 18(Suppl 3):S41–S47. doi:10.1016/S0960-9776(09)70271-1

    Article  PubMed  Google Scholar 

  6. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. doi:10.1038/nature10144

    Article  PubMed  CAS  Google Scholar 

  7. Loges S, Mazzone M, Hohensinner P, Carmeliet P (2009) Silencing or fueling metastasis with VEGF inhibitors: antiangiogenesis revisited. Cancer Cell 15(3):167–170. doi:10.1016/j.ccr.2009.02.007

    Article  PubMed  CAS  Google Scholar 

  8. Albrecht I, Christofori G (2011) Molecular mechanisms of lymphangiogenesis in development and cancer. Int J Dev Biol 55(4–5):483–494. doi:10.1387/ijdb.103226ia

    Article  PubMed  CAS  Google Scholar 

  9. Lund AW, Duraes FV, Hirosue S, Raghavan VR, Nembrini C, Thomas SN, Issa A, Hugues S, Swartz MA (2012) VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep 1(3):191–199. doi:10.1016/j.celrep.2012.01.005

    Article  PubMed  CAS  Google Scholar 

  10. Karagiannis ED, Popel AS (2008) A systematic methodology for proteome-wide identification of peptides inhibiting the proliferation and migration of endothelial cells. Proc Natl Acad Sci USA 105(37):13775–13780. doi:10.1073/pnas.0803241105

    Article  PubMed  CAS  Google Scholar 

  11. Karagiannis ED, Popel AS (2007) Identification of novel short peptides derived from the alpha 4, alpha 5, and alpha 6 fibrils of type IV collagen with anti-angiogenic properties. Biochem Biophys Res Commun 354(2):434–439. doi:10.1016/j.bbrc.2006.12.231

    Article  PubMed  CAS  Google Scholar 

  12. Koskimaki JE, Karagiannis ED, Rosca EV, Vesuna F, Winnard PT Jr, Raman V, Bhujwalla ZM, Popel AS (2009) Peptides derived from type IV collagen, CXC chemokines, and thrombospondin-1 domain-containing proteins inhibit neovascularization and suppress tumor growth in MDA-MB-231 breast cancer xenografts. Neoplasia 11(12):1285–1291

    PubMed  CAS  Google Scholar 

  13. Koskimaki JE, Karagiannis ED, Tang BC, Hammers H, Watkins DN, Pili R, Popel AS (2010) Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model. BMC Cancer 10:29. doi:10.1186/1471-2407-10-29

    Article  PubMed  CAS  Google Scholar 

  14. Rosca EV, Lal B, Koskimaki JE, Popel AS, Laterra J (2012) Collagen IV and CXC chemokine-derived antiangiogenic peptides suppress glioma xenograft growth. Anticancer Drugs. doi:10.1097/CAD.0b013e3283531041

    PubMed  Google Scholar 

  15. Rosca EV, Koskimaki JE, Pandey NB, Wolff AC, Popel AS (2011) Development of a biomimetic peptide derived from collagen IV with anti-angiogenic activity in breast cancer. Cancer Biol Ther 12(9):808–817

    Article  PubMed  CAS  Google Scholar 

  16. Rivera CG, Rosca EV, Pandey NB, Koskimaki JE, Bader JS, Popel AS (2011) Novel peptide-specific quantitative structure-activity relationship (QSAR) analysis applied to collagen IV peptides with antiangiogenic activity. J Med Chem 54(19):6492–6500. doi:10.1021/jm200114f

    Article  PubMed  CAS  Google Scholar 

  17. Rosca EV, Koskimaki JE, Pandey NB, Tamiz AP, Popel AS (2012) Structure-activity relationship study of collagen derived anti-angiogenic biomimetic peptides. Chem Biol Drug Des. doi:10.1111/j.1747-0285.2012.01376.x

    PubMed  Google Scholar 

  18. Lee E, Rosca EV, Pandey NB, Popel AS (2011) Small peptides derived from somatotropin domain-containing proteins inhibit blood and lymphatic endothelial cell proliferation, migration, adhesion and tube formation. Int J Biochem Cell Biol 43(12):1812–1821. doi:10.1016/j.biocel.2011.08.020

    Article  PubMed  CAS  Google Scholar 

  19. Huber PE, Bischof M, Jenne J, Heiland S, Peschke P, Saffrich R, Grone HJ, Debus J, Lipson KE, Abdollahi A (2005) Trimodal cancer treatment: beneficial effects of combined antiangiogenesis, radiation, and chemotherapy. Cancer Res 65(9):3643–3655. doi:10.1158/0008-5472.CAN-04-1668

    Article  PubMed  CAS  Google Scholar 

  20. Abdollahi A, Folkman J (2010) Evading tumor evasion: current concepts and perspectives of anti-angiogenic cancer therapy. Drug Resist Updat 13(1–2):16–28. doi:10.1016/j.drup.2009.12.001

    Article  PubMed  CAS  Google Scholar 

  21. Rosca EV, Koskimaki JE, Rivera CG, Pandey NB, Tamiz AP, Popel AS (2011) Anti-angiogenic peptides for cancer therapeutics. Curr Pharm Biotechnol 12(8):1101–1116

    Article  PubMed  CAS  Google Scholar 

  22. Saladin PM, Zhang BD, Reichert JM (2009) Current trends in the clinical development of peptide therapeutics. IDrugs 12(12):779–784

    PubMed  CAS  Google Scholar 

  23. Foy KC, Liu Z, Phillips G, Miller M, Kaumaya PT (2011) Combination treatment with HER-2 and VEGF peptide mimics induces potent anti-tumor and anti-angiogenic responses in vitro and in vivo. J Biol Chem 286(15):13626–13637. doi:10.1074/jbc.M110.216820

    Article  PubMed  CAS  Google Scholar 

  24. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  PubMed  CAS  Google Scholar 

  25. Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70(2):440–446. doi:10.1158/0008-5472.CAN-09-1947

    Article  PubMed  CAS  Google Scholar 

  26. Rosca EV, Koskimaki JE, Pandey NB, Wolff AC, Popel AS (2011) Development of a biomimetic peptide derived from collagen IV with anti-angiogenic activity in breast cancer. Cancer Biol Ther 12(9):808–817. doi:10.4161/cbt.12.9.17677

    Article  PubMed  CAS  Google Scholar 

  27. Zhang Z, Vuori K, Reed JC, Ruoslahti E (1995) The alpha 5 beta 1 integrin supports survival of cells on fibronectin and up-regulates Bcl-2 expression. Proc Natl Acad Sci USA 92(13):6161–6165

    Article  PubMed  CAS  Google Scholar 

  28. Le Boeuf F, Houle F, Huot J (2004) Regulation of vascular endothelial growth factor receptor 2-mediated phosphorylation of focal adhesion kinase by heat shock protein 90 and Src kinase activities. J Biol Chem 279(37):39175–39185. doi:10.1074/jbc.M405493200

    Article  PubMed  Google Scholar 

  29. Zhao X, Guan JL (2011) Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev 63(8):610–615. doi:10.1016/j.addr.2010.11.001

    Article  PubMed  CAS  Google Scholar 

  30. Infusino GA, Jacobson JR (2011) Endothelial FAK as a therapeutic target in disease. Microvasc Res. doi:10.1016/j.mvr.2011.09.011

    PubMed  Google Scholar 

  31. Xiong Y, Huo Y, Chen C, Zeng H, Lu X, Wei C, Ruan C, Zhang X, Hu Z, Shibuya M, Luo J (2009) Vascular endothelial growth factor (VEGF) receptor-2 tyrosine 1175 signaling controls VEGF-induced von Willebrand factor release from endothelial cells via phospholipase C-gamma 1- and protein kinase A-dependent pathways. J Biol Chem 284(35):23217–23224. doi:10.1074/jbc.M109.019679

    Article  PubMed  CAS  Google Scholar 

  32. Kiyoi H, Ohno R, Ueda R, Saito H, Naoe T (2002) Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene 21(16):2555–2563. doi:10.1038/sj.onc.1205332

    Article  PubMed  CAS  Google Scholar 

  33. Weisberg E, Barrett R, Liu Q, Stone R, Gray N, Griffin JD (2009) FLT3 inhibition and mechanisms of drug resistance in mutant FLT3-positive AML. Drug Resist Updat 12(3):81–89. doi:10.1016/j.drup.2009.04.001

    Article  PubMed  CAS  Google Scholar 

  34. Silva R, D’Amico G, Hodivala-Dilke KM, Reynolds LE (2008) Integrins: the keys to unlocking angiogenesis. Arterioscler Thromb Vasc Biol 28(10):1703–1713. doi:10.1161/ATVBAHA.108.172015

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH CA R01 138264, R21 CA131931, R21 CA 152473, The Safeway Foundation for Breast Cancer, The Thome Memorial Foundation and TEDCO Maryland Technology Development Corporation.

Ethical Standards

All experiments described herein complied with US legal and ethical standards.

Conflict of interest

The authors declare no conflict of interest. ASP serves as the CSO of AsclepiX Therapeutics, LLC; the terms of this arrangement are being managed by the Johns Hopkins University in accordance with its conflict of interest policies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob E. Koskimaki.

Additional information

Jacob E. Koskimaki and Esak Lee contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 28 kb)

Supplementary material 2 (TIFF 28594 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koskimaki, J.E., Lee, E., Chen, W. et al. Synergy between a collagen IV mimetic peptide and a somatotropin-domain derived peptide as angiogenesis and lymphangiogenesis inhibitors. Angiogenesis 16, 159–170 (2013). https://doi.org/10.1007/s10456-012-9308-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-012-9308-7

Keywords

Navigation