Skip to main content

Advertisement

Log in

Angiogenesis as a therapeutic target in arthritis: learning the lessons of the colorectal cancer experience

  • Review Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

The idea of a therapeutic modality aimed at ‘starving’ a tissue of blood vessels, and consequentially of oxygen and nutrients, was born from the concept that blood vessel formation (angiogenesis) is central to the progression and maintenance of diseases which involve tissue expansion/invasion. In the first instance, solid malignancies were the target for anti-angiogenic treatments, with colorectal cancer being the first disease for which an angiogenesis inhibitor—anti-vascular endothelial growth factor antibody bevacizumab—was approved in 2004.

Our understanding of the pathogenesis of rheumatoid arthritis (RA) has lead to many parallels being drawn between this chronic inflammatory disease and solid tumours, in that both involve tissue expansion, invasion, expression of cytokines and growth factors and areas of hypoxia/hypoperfusion. As a result, angiogenesis blockade has been touted as a possible treatment for RA. The lessons learnt during the progression of eventually successful therapies such as bevacizumab should undoubtedly guide us in the future development of comparable treatments for RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Reference

  1. Paleolog EM, Miotla JM (1998) Angiogenesis in arthritis: role in disease pathogenesis and as a potential therapeutic target. Angiogenesis 2(4):295–307

    PubMed  CAS  Google Scholar 

  2. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186

    Article  PubMed  CAS  Google Scholar 

  3. Folkman J, Merler E, Abernathy C, Williams G (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133(2):275–288

    PubMed  CAS  Google Scholar 

  4. Lobb RR, Key ME, Alderman EM, Fett JW (1985) Partial purification and characterization of a vascular permeability factor secreted by a human colon adenocarcinoma cell line. Int J Cancer 36(4):473–478

    PubMed  CAS  Google Scholar 

  5. Senger DR, Perruzzi CA, Feder J, Dvorak HF (1986) A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res 46(11):5629–5632

    PubMed  CAS  Google Scholar 

  6. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246(4935):1306–1309

    PubMed  CAS  Google Scholar 

  7. Ertel AN (1989) Flexor tendon ruptures in rheumatoid arthritis. Hand Clin 5(2):177–190

    PubMed  CAS  Google Scholar 

  8. Williamson SC, Feldon P (1995) Extensor tendon ruptures in rheumatoid arthritis. Hand Clin 11(3):449–459

    PubMed  CAS  Google Scholar 

  9. Walsh DA (1999) Angiogenesis and arthritis. Rheumatology (Oxford) 38(2):103–112

    CAS  Google Scholar 

  10. Koch AE (2003) Angiogenesis as a target in rheumatoid arthritis. Ann Rheum Dis 62(Suppl 2):ii60–ii67

    PubMed  CAS  Google Scholar 

  11. Schumacher HR Jr, Bautista BB, Krauser RE, Mathur AK, Gall EP (1994) Histological appearance of the synovium in early rheumatoid arthritis. Semin Arthritis Rheum 23(6 Suppl 2):3–10

    PubMed  Google Scholar 

  12. FitzGerald O, Bresnihan B (1995) Synovial membrane cellularity and vascularity. Ann Rheum Dis 54(6):511–515

    PubMed  CAS  Google Scholar 

  13. Hirohata S, Sakakibara J (1999) Angioneogenesis as a possible elusive triggering factor in rheumatoid arthritis. Lancet 353(9161):1331

    PubMed  CAS  Google Scholar 

  14. Rooney M, Condell D, Quinlan W, Daly L, Whelan A, Feighery C et al (1988) Analysis of the histologic variation of synovitis in rheumatoid arthritis. Arthritis Rheum 31(8):956–963

    PubMed  CAS  Google Scholar 

  15. Ceponis A, Konttinen YT, MacKevicius Z, Solovieva SA, Hukkanen M, Tamulaitiene M et al (1996) Aberrant vascularity and von Willebrand factor distribution in inflamed synovial membrane. J Rheumatol 23(11):1880–1886

    PubMed  CAS  Google Scholar 

  16. Walsh DA, Wade M, Mapp PI, Blake DR (1998) Focally regulated endothelial proliferation and cell death in human synovium. Am J Pathol 152(3):691–702

    PubMed  CAS  Google Scholar 

  17. Sivakumar B, Harry LE, Paleolog EM (2004) Modulating angiogenesis: more vs. less. Jama 292(8):972–977

    PubMed  CAS  Google Scholar 

  18. Sivakumar B, Paleolog EM (2005) Immunotherapy of rheumatoid arthritis: past, present and future. Curr Opin Drug Discov Devel 8(2):169–176

    PubMed  CAS  Google Scholar 

  19. Bainbridge J, Sivakumar B, Paleolog E (2006) Angiogenesis as a therapeutic target in arthritis: lessons from oncology. Curr Pharm Des 12(21):2631–2644

    PubMed  CAS  Google Scholar 

  20. Taylor PC, Paleolog EM (2006) Is the vasculature a potential therapeutic target in arthritis? Curr Rheumatol Rev 2(2):151–158

    CAS  Google Scholar 

  21. Sano H, Engleka K, Mathern P, Hla T, Crofford LJ, Remmers EF et al (1993) Coexpression of phosphotyrosine-containing proteins, platelet-derived growth factor-B, and fibroblast growth factor-1 in situ in synovial tissues of patients with rheumatoid arthritis and Lewis rats with adjuvant or streptococcal cell wall arthritis. J Clin Invest 91(2):553–565

    PubMed  CAS  Google Scholar 

  22. Sano H, Forough R, Maier JA, Case JP, Jackson A, Engleka K et al (1990) Detection of high levels of heparin binding growth factor-1 (acidic fibroblast growth factor) in inflammatory arthritic joints. J Cell Biol 110(4):1417–1426

    PubMed  CAS  Google Scholar 

  23. Remmers EF, Sano H, Lafyatis R, Case JP, Kumkumian GK, Hla T et al (1991) Production of platelet derived growth factor B chain (PDGF-B/c-sis) mRNA and immunoreactive PDGF B-like polypeptide by rheumatoid synovium: coexpression with heparin binding acidic fibroblast growth factor-1. J Rheumatol 18(1):7–13

    PubMed  CAS  Google Scholar 

  24. Koch AE, Halloran MM, Hosaka S, Shah MR, Haskell CJ, Baker SK et al (1996) Hepatocyte growth factor. A cytokine mediating endothelial migration in inflammatory arthritis. Arthritis Rheum 39(9):1566–1575

    PubMed  CAS  Google Scholar 

  25. Feuerherm AJ, Borset M, Seidel C, Sundan A, Leistad L, Ostensen M et al (2001) Elevated levels of osteoprotegerin (OPG) and hepatocyte growth factor (HGF) in rheumatoid arthritis. Scand J Rheumatol 30(4):229–234

    PubMed  CAS  Google Scholar 

  26. Yukioka K, Inaba M, Furumitsu Y, Yukioka M, Nishino T, Goto H et al (1994) Levels of hepatocyte growth factor in synovial fluid and serum of patients with rheumatoid arthritis and release of hepatocyte growth factor by rheumatoid synovial fluid cells. J Rheumatol 21(12):2184–2189

    PubMed  CAS  Google Scholar 

  27. Kusada J, Otsuka T, Matsui N, Hirano T, Asai K, Kato T (1993) Immuno-reactive human epidermal growth factor (h-EGF) in rheumatoid synovial fluids. Nippon Seikeigeka Gakkai Zasshi 67(9):859–865

    PubMed  CAS  Google Scholar 

  28. Farahat MN, Yanni G, Poston R, Panayi GS (1993) Cytokine expression in synovial membranes of patients with rheumatoid arthritis and osteoarthritis. Ann Rheum Dis 52(12):870–875

    PubMed  CAS  Google Scholar 

  29. Scott BB, Zaratin PF, Colombo A, Hansbury MJ, Winkler JD, Jackson JR (2002) Constitutive expression of angiopoietin-1 and -2 and modulation of their expression by inflammatory cytokines in rheumatoid arthritis synovial fibroblasts. J Rheumatol 29(2):230–239

    PubMed  CAS  Google Scholar 

  30. Gravallese EM, Pettit AR, Lee R, Madore R, Manning C, Tsay A et al (2003) Angiopoietin-1 is expressed in the synovium of patients with rheumatoid arthritis and is induced by tumour necrosis factor alpha. Ann Rheum Dis 62(2):100–107

    PubMed  CAS  Google Scholar 

  31. DeBusk LM, Chen Y, Nishishita T, Chen J, Thomas JW, Lin PC (2003) Tie2 receptor tyrosine kinase, a major mediator of tumor necrosis factor alpha-induced angiogenesis in rheumatoid arthritis. Arthritis Rheum 48(9):2461–2471

    PubMed  CAS  Google Scholar 

  32. Shahrara S, Volin MV, Connors MA, Haines GK, Koch AE (2002) Differential expression of the angiogenic Tie receptor family in arthritic and normal synovial tissue. Arthritis Res 4(3):201–208

    PubMed  CAS  Google Scholar 

  33. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. Faseb J 13(1):9–22

    PubMed  CAS  Google Scholar 

  34. Koch AE, Harlow LA, Haines GK, Amento EP, Unemori EN, Wong WL et al (1994) Vascular endothelial growth factor. A cytokine modulating endothelial function in rheumatoid arthritis. J Immunol 152(8):4149–4156

    PubMed  CAS  Google Scholar 

  35. Lee SS, Joo YS, Kim WU, Min DJ, Min JK, Park SH et al (2001) Vascular endothelial growth factor levels in the serum and synovial fluid of patients with rheumatoid arthritis. Clin Exp Rheumatol 19(3):321–324

    PubMed  CAS  Google Scholar 

  36. Fava RA, Olsen NJ, Spencer-Green G, Yeo KT, Yeo TK, Berse B et al (1994) Vascular permeability factor/endothelial growth factor (VPF/VEGF): accumulation and expression in human synovial fluids and rheumatoid synovial tissue. J Exp Med 180(1):341–346

    PubMed  CAS  Google Scholar 

  37. Paleolog EM, Young S, Stark AC, McCloskey RV, Feldmann M, Maini RN (1998) Modulation of angiogenic vascular endothelial growth factor by tumor necrosis factor alpha and interleukin-1 in rheumatoid arthritis. Arthritis Rheum 41(7):1258–1265

    PubMed  CAS  Google Scholar 

  38. Harada M, Mitsuyama K, Yoshida H, Sakisaka S, Taniguchi E, Kawaguchi T et al (1998) Vascular endothelial growth factor in patients with rheumatoid arthritis. Scand J Rheumatol 27(5):377–380

    PubMed  CAS  Google Scholar 

  39. Kikuchi K, Kubo M, Kadono T, Yazawa N, Ihn H, Tamaki K (1998) Serum concentrations of vascular endothelial growth factor in collagen diseases. Br J Dermatol 139(6):1049–1051

    PubMed  CAS  Google Scholar 

  40. Sone H, Sakauchi M, Takahashi A, Suzuki H, Inoue N, Iida K et al (2001) Elevated levels of vascular endothelial growth factor in the sera of patients with rheumatoid arthritis correlation with disease activity. Life Sci 69(16):1861–1869

    PubMed  CAS  Google Scholar 

  41. Pufe T, Petersen W, Tillmann B, Mentlein R (2001) The splice variants VEGF121 and VEGF189 of the angiogenic peptide vascular endothelial growth factor are expressed in osteoarthritic cartilage. Arthritis Rheum 44(5):1082–1088

    PubMed  CAS  Google Scholar 

  42. Ballara SC, Taylor PC, Reusch P, Marmé D, Feldmann M, Maini RN et al (2001) Raised serum vascular endothelial growth factor levels are associated with destructive change in inflammatory arthritis. Arthritis Rheum 44(9):2055–2064

    PubMed  CAS  Google Scholar 

  43. Latour F, Zabraniecki L, Dromer C, Brouchet A, Durroux R, Fournie B (2001) Does vascular endothelial growth factor in the rheumatoid synovium predict joint destruction? A clinical, radiological, and pathological study in 12 patients monitored for 10 years. Joint Bone Spine 68(6):493–498

    PubMed  CAS  Google Scholar 

  44. Clavel G, Bessis N, Lemeiter D, Fardellone P, Mejjad O, Menard JF et al (2007) Angiogenesis markers (VEGF, soluble receptor of VEGF and angiopoietin-1) in very early arthritis and their association with inflammation and joint destruction. Clin Immunol 124(2):158–164

    PubMed  CAS  Google Scholar 

  45. Nakahara H, Song J, Sugimoto M, Hagihara K, Kishimoto T, Yoshizaki K et al (2003) Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis Rheum 48(6):1521–1529

    PubMed  CAS  Google Scholar 

  46. Klimiuk PA, Sierakowski S, Domyslawska I, Fiedorczyk M, Chwiecko J (2004) Reduction of soluble adhesion molecules (sICAM-1, sVCAM-1, and sE-selectin) and vascular endothelial growth factor levels in serum of rheumatoid arthritis patients following multiple intravenous infusions of infliximab. Arch Immunol Ther Exp (Warsz) 52(1):36–42

    CAS  Google Scholar 

  47. Aggarwal A, Panda S, Misra R (2004) Effect of etanercept on matrix metalloproteinases and angiogenic vascular endothelial growth factor: a time kinetic study. Ann Rheum Dis 63(7):891–892

    PubMed  CAS  Google Scholar 

  48. Macias I, Garcia-Perez S, Ruiz-Tudela M, Medina F, Chozas N, Giron-Gonzalez JA (2005) Modification of pro- and antiinflammatory cytokines and vascular-related molecules by tumor necrosis factor-a blockade in patients with rheumatoid arthritis. J Rheumatol 32(11):2102–2108

    PubMed  CAS  Google Scholar 

  49. Nagashima M, Wauke K, Hirano D, Ishigami S, Aono H, Takai M et al (2000) Effects of combinations of anti-rheumatic drugs on the production of vascular endothelial growth factor and basic fibroblast growth factor in cultured synoviocytes and patients with rheumatoid arthritis. Rheumatology (Oxford) 39(11):1255–1262

    CAS  Google Scholar 

  50. Kuryliszyn-Moskal A, Klimiuk PA, Sierakowski S, Ciolkiewicz M (2006) A study on vascular endothelial growth factor and endothelin-1 in patients with extra-articular involvement of rheumatoid arthritis. Clin Rheumatol 25(3):314–319

    PubMed  Google Scholar 

  51. Ikeda M, Hosoda Y, Hirose S, Okada Y, Ikeda E (2000) Expression of vascular endothelial growth factor isoforms and their receptors Flt-1, KDR, and neuropilin-1 in synovial tissues of rheumatoid arthritis. J Pathol 191(4):426–433

    PubMed  CAS  Google Scholar 

  52. Giatromanolaki A, Sivridis E, Athanassou N, Zois E, Thorpe PE, Brekken RA et al (2001) The angiogenic pathway “vascular endothelial growth factor/flk-1(KDR)-receptor” in rheumatoid arthritis and osteoarthritis. J Pathol 194(1):101–108

    PubMed  CAS  Google Scholar 

  53. Lund-Olesen K (1970) Oxygen tension in synovial fluids. Arthritis Rheum 13(6):769–776

    PubMed  CAS  Google Scholar 

  54. Etherington PJ, Winlove P, Taylor P, Paleolog E, Miotla JM (2002) VEGF release is associated with reduced oxygen tensions in experimental inflammatory arthritis. Clin Exp Rheumatol 20(6):799–805

    PubMed  CAS  Google Scholar 

  55. Sivakumar B (2006) Hypoxia-driven angiogensis is a key feature of tendon disease in rheumatoid arthritis. Vascul Pharmacol 45(3):e123

    Google Scholar 

  56. Hitchon C, Wong K, Ma G, Reed J, Lyttle D, El-Gabalawy H (2002) Hypoxia-induced production of stromal cell-derived factor 1 (CXCL12) and vascular endothelial growth factor by synovial fibroblasts. Arthritis Rheum 46(10):2587–2597

    PubMed  CAS  Google Scholar 

  57. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ et al (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292(5516):468–472

    PubMed  CAS  Google Scholar 

  58. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M et al (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292(5516):464–468

    PubMed  CAS  Google Scholar 

  59. Wiesener MS, Turley H, Allen WE, Willam C, Eckardt KU, Talks KL et al (1998) Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1alpha. Blood 92(7):2260–2268

    PubMed  CAS  Google Scholar 

  60. Jiang BH, Semenza GL, Bauer C, Marti HH (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 271(4 Pt 1):C1172–C1180

    PubMed  CAS  Google Scholar 

  61. Zhou J, Schmid T, Brune B (2003) Tumor necrosis factor-alpha causes accumulation of a ubiquitinated form of hypoxia inducible factor-1alpha through a nuclear factor-kappaB-dependent pathway. Mol Biol Cell 14(6):2216–2225

    PubMed  CAS  Google Scholar 

  62. Scharte M, Han X, Bertges DJ, Fink MP, Delude RL (2003) Cytokines induce HIF-1 DNA binding and the expression of HIF-1-dependent genes in cultured rat enterocytes. Am J Physiol Gastrointest Liver Physiol 284(3):G373–G384

    PubMed  CAS  Google Scholar 

  63. Hellwig-Burgel T, Rutkowski K, Metzen E, Fandrey J, Jelkmann W (1999) Interleukin-1beta and tumor necrosis factor-alpha stimulate DNA binding of hypoxia-inducible factor-1. Blood 94(5):1561–1567

    PubMed  CAS  Google Scholar 

  64. Albina JE, Mastrofrancesco B, Vessella JA, Louis CA, Henry WL Jr, Reichner JS (2001) HIF-1 expression in healing wounds: HIF-1alpha induction in primary inflammatory cells by TNF-alpha. Am J Physiol Cell Physiol 281(6):C1971–C1977

    PubMed  CAS  Google Scholar 

  65. Bilton RL, Booker GW (2003) The subtle side to hypoxia inducible factor (HIFalpha) regulation. Eur J Biochem 270(5):791–798

    PubMed  CAS  Google Scholar 

  66. Jung Y, Isaacs JS, Lee S, Trepel J, Liu ZG, Neckers L (2003) Hypoxia-inducible factor induction by tumour necrosis factor in normoxic cells requires receptor-interacting protein-dependent nuclear factor kappa B activation. Biochem J 370(Pt 3):1011–1017

    PubMed  CAS  Google Scholar 

  67. Berse B, Hunt JA, Diegel RJ, Morganelli P, Yeo K, Brown F et al (1999) Hypoxia augments cytokine (transforming growth factor-beta (TGF-beta) and IL-1)-induced vascular endothelial growth factor secretion by human synovial fibroblasts. Clin Exp Immunol 115(1):176–182

    PubMed  CAS  Google Scholar 

  68. Hollander AP, Corke KP, Freemont AJ, Lewis CE (2001) Expression of hypoxia-inducible factor 1alpha by macrophages in the rheumatoid synovium: implications for targeting of therapeutic genes to the inflamed joint. Arthritis Rheum 44(7):1540–1544

    PubMed  CAS  Google Scholar 

  69. Peters CL, Morris CJ, Mapp PI, Blake DR, Lewis CE, Winrow VR (2004) The transcription factors hypoxia-inducible factor 1alpha and Ets-1 colocalize in the hypoxic synovium of inflamed joints in adjuvant-induced arthritis. Arthritis Rheum 50(1):291–296

    PubMed  CAS  Google Scholar 

  70. Giatromanolaki A, Sivridis E, Maltezos E, Athanassou N, Papazoglou D, Gatter KC et al (2003) Upregulated hypoxia inducible factor-1alpha and -2alpha pathway in rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 5(4):R193–R201

    PubMed  CAS  Google Scholar 

  71. Richman AI, Su EY, Ho G Jr (1981) Reciprocal relationship of synovial fluid volume and oxygen tension. Arthritis Rheum 24(5):701–705

    PubMed  CAS  Google Scholar 

  72. Lee YA, Kim JY, Hong SJ, Lee SH, Yoo MC, Kim KS et al (2007). Synovial proliferation differentially affects hypoxia in the joint cavities of rheumatoid arthritis and osteoarthritis patients. Clin Rheumatol, doi: 10.1007/s10067-007-0605-2

  73. Qu Z, Huang XN, Ahmadi P, Andresevic J, Planck SR, Hart CE et al (1995) Expression of basic fibroblast growth factor in synovial tissue from patients with rheumatoid arthritis and degenerative joint disease. Lab Invest 73(3):339–346

    PubMed  CAS  Google Scholar 

  74. Salvador G, Sanmarti R, Gil-Torregrosa B, Garcia-Peiro A, Rodriguez-Cros JR, Canete JD (2006) Synovial vascular patterns and angiogenic factors expression in synovial tissue and serum of patients with rheumatoid arthritis. Rheumatology (Oxford) 45(8):966–971

    CAS  Google Scholar 

  75. Dooley S, Herlitzka I, Hanselmann R, Ermis A, Henn W, Remberger K et al (1996) Constitutive expression of c-fos and c-jun, overexpression of ets-2, and reduced expression of metastasis suppressor gene nm23-H1 in rheumatoid arthritis. Ann Rheum Dis 55(5):298–304

    PubMed  CAS  Google Scholar 

  76. Trabandt A, Aicher WK, Gay RE, Sukhatme VP, Nilson-Hamilton M, Hamilton RT et al (1990) Expression of the collagenolytic and Ras-induced cysteine proteinase cathepsin L and proliferation-associated oncogenes in synovial cells of MRL/I mice and patients with rheumatoid arthritis. Matrix 10(6):349–361

    PubMed  CAS  Google Scholar 

  77. Lacey D, Sampey A, Mitchell R, Bucala R, Santos L, Leech M et al (2003) Control of fibroblast-like synoviocyte proliferation by macrophage migration inhibitory factor. Arthritis Rheum 48(1):103–109

    PubMed  CAS  Google Scholar 

  78. Lee MS, Yoo SA, Cho CS, Suh PG, Kim WU, Ryu SH (2006) Serum amyloid A binding to formyl peptide receptor-like 1 induces synovial hyperplasia and angiogenesis. J Immunol 177(8):5585–5594

    PubMed  CAS  Google Scholar 

  79. Kim WU, Kang SS, Yoo SA, Hong KH, Bae DG, Lee MS et al (2006) Interaction of vascular endothelial growth factor 165 with neuropilin-1 protects rheumatoid synoviocytes from apoptotic death by regulating Bcl-2 expression and Bax translocation. J Immunol 177(8):5727–5735

    PubMed  CAS  Google Scholar 

  80. Miagkov AV, Kovalenko DV, Brown CE, Didsbury JR, Cogswell JP, Stimpson SA et al (1998) NF-kappaB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proc Natl Acad Sci USA 95(23):13859–13864

    PubMed  CAS  Google Scholar 

  81. Schedel J, Gay RE, Kuenzler P, Seemayer C, Simmen B, Michel BA et al (2002) FLICE-inhibitory protein expression in synovial fibroblasts and at sites of cartilage and bone erosion in rheumatoid arthritis. Arthritis Rheum 46(6):1512–1518

    PubMed  CAS  Google Scholar 

  82. Meinecke I, Cinski A, Baier A, Peters MA, Dankbar B, Wille A et al (2007) Modification of nuclear PML protein by SUMO-1 regulates Fas-induced apoptosis in rheumatoid arthritis synovial fibroblasts. Proc Natl Acad Sci USA 104(12):5073–5078

    PubMed  CAS  Google Scholar 

  83. Seemayer CA, Kuchen S, Kuenzler P, Rihoskova V, Rethage J, Aicher WK et al (2003) Cartilage destruction mediated by synovial fibroblasts does not depend on proliferation in rheumatoid arthritis. Am J Pathol 162(5):1549–1557

    PubMed  CAS  Google Scholar 

  84. Mohr W, Beneke G, Mohing W (1975) Proliferation of synovial lining cells and fibroblasts. Ann Rheum Dis 34(3):219–224

    PubMed  CAS  Google Scholar 

  85. Baier A, Meineckel I, Gay S, Pap T (2003) Apoptosis in rheumatoid arthritis. Curr Opin Rheumatol 15(3):274–279

    PubMed  CAS  Google Scholar 

  86. Ho QT, Kuo CJ (2007) Vascular endothelial growth factor: biology and therapeutic applications. Int J Biochem Cell Biol 39(7–8):1349–1357

    PubMed  CAS  Google Scholar 

  87. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967

    PubMed  CAS  Google Scholar 

  88. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85(3):221–228

    PubMed  CAS  Google Scholar 

  89. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H et al (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. Embo J 18(14):3964–3972

    PubMed  CAS  Google Scholar 

  90. Murayama T, Tepper OM, Silver M, Ma H, Losordo DW, Isner JM et al (2002) Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp Hematol 30(8):967–972

    PubMed  CAS  Google Scholar 

  91. Hattori K, Dias S, Heissig B, Hackett NR, Lyden D, Tateno M et al (2001) Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 193(9):1005–1014

    PubMed  CAS  Google Scholar 

  92. Ruger B, Giurea A, Wanivenhaus AH, Zehetgruber H, Hollemann D, Yanagida G et al (2004) Endothelial precursor cells in the synovial tissue of patients with rheumatoid arthritis and osteoarthritis. Arthritis Rheum 50(7):2157–2166

    PubMed  Google Scholar 

  93. Grisar J, Aletaha D, Steiner CW, Kapral T, Steiner S, Seidinger D et al (2005) Depletion of endothelial progenitor cells in the peripheral blood of patients with rheumatoid arthritis. Circulation 111(2):204–211

    PubMed  Google Scholar 

  94. Herbrig K, Haensel S, Oelschlaegel U, Pistrosch F, Foerster S, Passauer J (2005) Endothelial dysfunction in patients with rheumatoid arthritis is associated with a reduced number and impaired function of endothelial progenitor cells. Ann Rheum Dis 65(2):157–163

    PubMed  Google Scholar 

  95. Hirohata S, Yanagida T, Nampei A, Kunugiza Y, Hashimoto H, Tomita T et al (2004) Enhanced generation of endothelial cells from CD34+ cells of the bone marrow in rheumatoid arthritis: possible role in synovial neovascularization. Arthritis Rheum 50(12):3888–3896

    PubMed  Google Scholar 

  96. Ablin JN, Boguslavski V, Aloush V, Elkayam O, Paran D, Caspi D et al (2006) Effect of anti-TNFalpha treatment on circulating endothelial progenitor cells (EPCs) in rheumatoid arthritis. Life Sci 79(25):2364–2369

    PubMed  CAS  Google Scholar 

  97. Van Doornum S, McColl G, Wicks IP (2002) Accelerated atherosclerosis: an extraarticular feature of rheumatoid arthritis? Arthritis Rheum 46(4):862–873

    PubMed  Google Scholar 

  98. Van Doornum S, Brand C, King B, Sundararajan V (2006) Increased case fatality rates following a first acute cardiovascular event in patients with rheumatoid arthritis. Arthritis Rheum 54(7):2061–2068

    PubMed  Google Scholar 

  99. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H et al (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89(1):E1–E7

    PubMed  CAS  Google Scholar 

  100. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA et al (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348(7):593–600

    PubMed  Google Scholar 

  101. Schmidt-Lucke C, Rossig L, Fichtlscherer S, Vasa M, Britten M, Kamper U et al (2005) Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation 111(22):2981–2987

    PubMed  Google Scholar 

  102. Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A et al (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353(10):999–1007

    PubMed  CAS  Google Scholar 

  103. Grisar JC, Aletaha D, Steiner CW, Kapral T, Steiner S, Saemann M et al (2007) Endothelial progenitor cells in active rheumatoid arthritis: Effects of TNF and of glucocorticoid therapy. Ann Rheum Dis, doi: 10.1136/ard.2006.066605

  104. Seeger FH, Haendeler J, Walter DH, Rochwalsky U, Reinhold J, Urbich C et al (2005) p38 mitogen-activated protein kinase downregulates endothelial progenitor cells. Circulation 111(9):1184–1191

    PubMed  CAS  Google Scholar 

  105. Taylor PC, Sivakumar B (2005) Hypoxia and angiogenesis in rheumatoid arthritis. Curr Opin Rheumatol 17(3):293–298

    PubMed  Google Scholar 

  106. Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P (2007) Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 18(3):581–592

    PubMed  CAS  Google Scholar 

  107. Statistics OfN. Mortality Statistics: Cause. England and Wales 2005. London TSO 2006

  108. Campbell NC, Elliott AM, Sharp L, Ritchie LD, Cassidy J, Little J (2001) Rural and urban differences in stage at diagnosis of colorectal and lung cancers. Br J Cancer 84(7):910–914

    PubMed  CAS  Google Scholar 

  109. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676

    PubMed  CAS  Google Scholar 

  110. Hollingsworth HC, Kohn EC, Steinberg SM, Rothenberg ML, Merino MJ (1995) Tumor angiogenesis in advanced stage ovarian carcinoma. Am J Pathol 147(1):33–41

    PubMed  CAS  Google Scholar 

  111. Kuwai T, Kitadai Y, Tanaka S, Onogawa S, Matsutani N, Kaio E et al (2003) Expression of hypoxia-inducible factor-1alpha is associated with tumor vascularization in human colorectal carcinoma. Int J Cancer 105(2):176–181

    PubMed  CAS  Google Scholar 

  112. Konerding MA, Malkusch W, Klapthor B, van Ackern C, Fait E, Hill SA et al (1999) Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts. Br J Cancer 80(5–6):724–732

    PubMed  CAS  Google Scholar 

  113. Denekamp J (1990) Vascular attack as a therapeutic strategy for cancer. Cancer Metastasis Rev 9(3):267–282

    PubMed  CAS  Google Scholar 

  114. Wouters BG, Weppler SA, Koritzinsky M, Landuyt W, Nuyts S, Theys J et al (2002) Hypoxia as a target for combined modality treatments. Eur J Cancer 38(2):240–257

    PubMed  CAS  Google Scholar 

  115. Goethals L, Debucquoy A, Perneel C, Geboes K, Ectors N, De Schutter H et al (2006) Hypoxia in human colorectal adenocarcinoma: comparison between extrinsic and potential intrinsic hypoxia markers. Int J Radiat Oncol Biol Phys 65(1):246–254

    PubMed  CAS  Google Scholar 

  116. Zakarija A, Soff G (2005) Update on angiogenesis inhibitors. Curr Opin Oncol 17(6):578–583

    PubMed  CAS  Google Scholar 

  117. Presta LG, Chen H, O’Connor SJ, Chisholm V, Meng YG, Krummen L et al (1997) Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 57(20):4593–4599

    PubMed  CAS  Google Scholar 

  118. Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7(9):987–989

    PubMed  CAS  Google Scholar 

  119. Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT et al (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10(2):145–147

    PubMed  CAS  Google Scholar 

  120. Koukourakis MI, Mavanis I, Kouklakis G, Pitiakoudis M, Minopoulos G, Manolas C et al (2007) Early antivascular effects of bevacizumab anti-VEGF monoclonal antibody on colorectal carcinomas assessed with functional CT imaging. Am J Clin Oncol 30(3):315–318

    PubMed  CAS  Google Scholar 

  121. Yao K, Gietema JA, Shida S, Selvakumaran M, Fonrose X, Haas NB et al (2005) In vitro hypoxia-conditioned colon cancer cell lines derived from HCT116 and HT29 exhibit altered apoptosis susceptibility and a more angiogenic profile in vivo. Br J Cancer 93(12):1356–1363

    PubMed  CAS  Google Scholar 

  122. Kabbinavar F, Hurwitz HI, Fehrenbacher L, Meropol NJ, Novotny WF, Lieberman G et al (2003) Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 21(1):60–65

    PubMed  CAS  Google Scholar 

  123. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342

    PubMed  CAS  Google Scholar 

  124. Kabbinavar FF, Hambleton J, Mass RD, Hurwitz HI, Bergsland E, Sarkar S (2005) Combined analysis of efficacy: the addition of bevacizumab to fluorouracil/leucovorin improves survival for patients with metastatic colorectal cancer. J Clin Oncol 23(16):3706–3712

    PubMed  CAS  Google Scholar 

  125. Giantonio BJ, Levy DE, O’Dwyer P J, Meropol NJ, Catalano PJ, Benson AB 3rd (2006) A phase II study of high-dose bevacizumab in combination with irinotecan, 5-fluorouracil, leucovorin, as initial therapy for advanced colorectal cancer: results from the Eastern Cooperative Oncology Group study E2200. Ann Oncol 17(9):1399–1403

    PubMed  CAS  Google Scholar 

  126. Wood JM, Bold G, Buchdunger E, Cozens R, Ferrari S, Frei J et al (2000) PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res 60(8):2178–2189

    PubMed  CAS  Google Scholar 

  127. Hecht J, Trarbach T, Jaeger E, Hainsworth J, Wolff R, Lloyd K et al (2005) A randomized, double-blind, placebo-controlled, phase III study in patients (Pts) with metastatic adenocarcinoma of the colon or rectum receiving first-line chemotherapy with oxaliplatin/ 5-fluorouracil. J Clin Oncol 2005 ASCO Annual Meeting Proceedings 23(16S, Part I of II (June 1 Supplement)):3

  128. Koehne C, Bajetta E, Lin E, Van Cutsem E, Hecht J, Douillard J et al (2006) Results of an interim analysis of a multinational randomized, double-blind, phase III study in patients (pts) with previously treated metastatic colorectal cancer (mCRC) receiving FOLFOX4 and PTK787/ZK 222584 (PTK/ZK) or placebo (CONFIRM 2). J Clin Oncol, 2006 ASCO Annual Meeting Proceedings Part I 24(No. 18S (June 20 Supplement), 2006):3508

  129. Major P, Trarbach T, Lenz H, Kerr D, Pendergrass K, Douillard J et al (2006) A meta-analysis of two randomized, double-blind, placebo-controlled, phase III studies in patients (pts) with metastatic colorectal cancer (mCRC) receiving FOLFOX4 and PTK/ZK to determine clinical benefit on progression-free survival (PFS) in high LDH pts. J Clin Oncol, 2006 ASCO Annual Meeting Proceedings Part I 24(No. 18S (June 20 Supplement)):3529

  130. Jost LM, Gschwind HP, Jalava T, Wang Y, Guenther C, Souppart C et al (2006) Metabolism and disposition of vatalanib (PTK787/ZK-222584) in cancer patients. Drug Metab Dispos 34(11):1817–1828

    PubMed  CAS  Google Scholar 

  131. Malemud CJ (2007) Growth hormone, VEGF and FGF: involvement in rheumatoid arthritis. Clin Chim Acta 375(1–2):10–19

    PubMed  CAS  Google Scholar 

  132. Berry S, Cunningham D, Michael M, Dibartolomeo M, Rivera F, Kretzschmar A et al (2006) Preliminary safety of bevacizumab with first-line Folfox, Capox, Folfiri and capecitabine for mCRC-First B.E.A.Trial. J Clin Oncol, ASCO Annual Meeting Proceedings Part I 24(No. 18S (June 20 Supplement)):3534

  133. Scappaticci FA, Fehrenbacher L, Cartwright T, Hainsworth JD, Heim W, Berlin J et al (2005) Surgical wound healing complications in metastatic colorectal cancer patients treated with bevacizumab. J Surg Oncol 91(3):173–180

    PubMed  CAS  Google Scholar 

  134. Tabruyn SP, Griffioen AW (2007) Molecular pathways of angiogenesis inhibition. Biochem Biophys Res Commun 355(1):1–5

    PubMed  CAS  Google Scholar 

  135. Williams RO (2007) Collagen-induced arthritis in mice: a major role for tumor necrosis factor-alpha. Methods Mol Biol (Clifton, NJ 361:265–284

    CAS  Google Scholar 

  136. Holmdahl R, Jansson L, Larsson E, Rubin K, Klareskog L (1986) Homologous type II collagen induces chronic and progressive arthritis in mice. Arthritis Rheum 29(1):106–113

    PubMed  CAS  Google Scholar 

  137. Malfait AM, Williams RO, Malik AS, Maini RN, Feldmann M (2001) Chronic relapsing homologous collagen-induced arthritis in DBA/1 mice as a model for testing disease-modifying and remission-inducing therapies. Arthritis Rheum 44(5):1215–1224

    PubMed  CAS  Google Scholar 

  138. Williams RO, Ghrayeb J, Feldmann M, Maini RN (1995) Successful therapy of collagen-induced arthritis with TNF receptor-IgG fusion protein and combination with anti-CD4. Immunology 84(3):433–439

    PubMed  CAS  Google Scholar 

  139. Williams RO, Marinova-Mutafchieva L, Feldmann M, Maini RN (2000) Evaluation of TNF-alpha and IL-1 blockade in collagen-induced arthritis and comparison with combined anti-TNF-alpha/anti-CD4 therapy. J Immunol 165(12):7240–7245

    PubMed  CAS  Google Scholar 

  140. Williams RO, Mason LJ, Feldmann M, Maini RN (1994) Synergy between anti-CD4 and anti-tumor necrosis factor in the amelioration of established collagen-induced arthritis. Proc Natl Acad Sci USA 91(7):2762–2766

    PubMed  CAS  Google Scholar 

  141. Lu J, Kasama T, Kobayashi K, Yoda Y, Shiozawa F, Hanyuda M et al (2000) Vascular endothelial growth factor expression and regulation of murine collagen-induced arthritis. J Immunol 164(11):5922–5927

    PubMed  CAS  Google Scholar 

  142. Sone H, Kawakami Y, Sakauchi M, Nakamura Y, Takahashi A, Shimano H et al (2001) Neutralization of vascular endothelial growth factor prevents collagen-induced arthritis and ameliorates established disease in mice. Biochem Biophys Res Commun 281(2):562–568

    PubMed  CAS  Google Scholar 

  143. Miotla J, Maciewicz R, Kendrew J, Feldmann M, Paleolog E (2000) Treatment with soluble VEGF receptor reduces disease severity in murine collagen-induced arthritis. Lab Invest 80(8):1195–1205

    Article  PubMed  CAS  Google Scholar 

  144. Afuwape AO, Feldmann M, Paleolog EM (2003) Adenoviral delivery of soluble VEGF receptor 1 (sFlt-1) abrogates disease activity in murine collagen-induced arthritis. Gene Ther 10(23):1950–1960

    PubMed  CAS  Google Scholar 

  145. de Bandt M, Ben Mahdi MH, Ollivier V, Grossin M, Dupuis M, Gaudry M et al (2003) Blockade of vascular endothelial growth factor receptor I (VEGF-RI), but not VEGF-RII, suppresses joint destruction in the K/BxN model of rheumatoid arthritis. J Immunol 171(9):4853–4859

    PubMed  Google Scholar 

  146. Luttun A, Tjwa M, Moons L, Wu Y, Angelillo-Scherrer A, Liao F et al (2002) Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 8(8):831–840

    PubMed  CAS  Google Scholar 

  147. Grosios K, Wood J, Esser R, Raychaudhuri A, Dawson J (2004) Angiogenesis inhibition by the novel VEGF receptor tyrosine kinase inhibitor, PTK787/ZK222584, causes significant anti-arthritic effects in models of rheumatoid arthritis. Inflamm Res 53(4):133–142

    PubMed  CAS  Google Scholar 

  148. Clauss M, Weich H, Breier G, Knies U, Rockl W, Waltenberger J et al (1996) The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J Biol Chem 271(30):17629–17634

    PubMed  CAS  Google Scholar 

  149. Sawano A, Iwai S, Sakurai Y, Ito M, Shitara K, Nakahata T et al (2001) Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood 97(3):785–791

    PubMed  CAS  Google Scholar 

  150. Murakami M, Iwai S, Hiratsuka S, Yamauchi M, Nakamura K, Iwakura Y et al (2006) Signaling of vascular endothelial growth factor receptor-1 tyrosine kinase promotes rheumatoid arthritis through activation of monocytes/macrophages. Blood 108(6):1849–1856

    PubMed  CAS  Google Scholar 

  151. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439

    PubMed  CAS  Google Scholar 

  152. Mould AW, Tonks ID, Cahill MM, Pettit AR, Thomas R, Hayward NK et al (2003) Vegfb gene knockout mice display reduced pathology and synovial angiogenesis in both antigen-induced and collagen-induced models of arthritis. Arthritis Rheum 48(9):2660–2669

    PubMed  CAS  Google Scholar 

  153. Autiero M, Luttun A, Tjwa M, Carmeliet P (2003) Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. J Thromb Haemost 1(7):1356–1370

    PubMed  CAS  Google Scholar 

  154. Tjwa M, Luttun A, Autiero M, Carmeliet P (2003) VEGF and PlGF: two pleiotropic growth factors with distinct roles in development and homeostasis. Cell Tissue Res 314(1):5–14

    PubMed  CAS  Google Scholar 

  155. Autiero M, Waltenberger J, Communi D, Kranz A, Moons L, Lambrechts D et al (2003) Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 9(7):936–943

    PubMed  CAS  Google Scholar 

  156. Oosthuyse B, Moons L, Storkebaum E, Beck H, Nuyens D, Brusselmans K et al (2001) Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 28(2):131–138

    PubMed  CAS  Google Scholar 

  157. Bottomley MJ, Webb NJ, Watson CJ, Holt L, Bukhari M, Denton J et al (2000) Placenta growth factor (PlGF) induces vascular endothelial growth factor (VEGF) secretion from mononuclear cells and is co-expressed with VEGF in synovial fluid. Clin Exp Immunol 119(1):182–188

    PubMed  CAS  Google Scholar 

  158. Date K, Matsumoto K, Shimura H, Tanaka M, Nakamura T (1997) HGF/NK4 is a specific antagonist for pleiotrophic actions of hepatocyte growth factor. FEBS Lett 420(1):1–6

    PubMed  CAS  Google Scholar 

  159. Kuba K, Matsumoto K, Date K, Shimura H, Tanaka M, Nakamura T (2000) HGF/NK4, a four-kringle antagonist of hepatocyte growth factor, is an angiogenesis inhibitor that suppresses tumor growth and metastasis in mice. Cancer Res 60(23):6737–6743

    PubMed  CAS  Google Scholar 

  160. Nakabayashi M, Morishita R, Nakagami H, Kuba K, Matsumoto K, Nakamura T et al (2003) HGF/NK4 inhibited VEGF-induced angiogenesis in in vitro cultured endothelial cells and in vivo rabbit model. Diabetologia 46(1):115–123

    PubMed  CAS  Google Scholar 

  161. Matsumoto K, Nakamura T (2005) Mechanisms and significance of bifunctional NK4 in cancer treatment. Biochem Biophys Res Commun 333(2):316–327

    PubMed  CAS  Google Scholar 

  162. Kim JM, Ho SH, Park EJ, Hahn W, Cho H, Jeong JG et al (2002) Angiostatin gene transfer as an effective treatment strategy in murine collagen-induced arthritis. Arthritis Rheum 46(3):793–801

    PubMed  CAS  Google Scholar 

  163. Kato K, Miyake K, Igarashi T, Yoshino S, Shimada T (2005) Human immunodeficiency virus vector-mediated intra-articular expression of angiostatin inhibits progression of collagen-induced arthritis in mice. Rheumatol Int 25(7):522–529

    PubMed  CAS  Google Scholar 

  164. Takahashi H, Kato K, Miyake K, Hirai Y, Yoshino S, Shimada T (2005) Adeno-associated virus vector-mediated anti-angiogenic gene therapy for collagen-induced arthritis in mice. Clin Exp Rheumatol 23(4):455–461

    PubMed  CAS  Google Scholar 

  165. Sumariwalla P, Cao Y, Wu H, Feldmann M, Paleolog E (2003) The angiogenesis inhibitor protease-activated kringles 1–5 reduces the severity of murine collagen-induced arthritis. Arthritis Res Ther 5:R32–R39

    PubMed  CAS  Google Scholar 

  166. Matsuno H, Yudoh K, Uzuki M, Nakazawa F, Sawai T, Yamaguchi N et al (2002) Treatment with the angiogenesis inhibitor endostatin: a novel therapy in rheumatoid arthritis. J Rheumatol 29(5):890–895

    PubMed  CAS  Google Scholar 

  167. Yin G, Liu W, An P, Li P, Ding I, Planelles V et al (2002) Endostatin gene transfer inhibits joint angiogenesis and pannus formation in inflammatory arthritis. Mol Ther 5(5 Pt 1):547–554

    PubMed  CAS  Google Scholar 

  168. Kurosaka D, Yoshida K, Yasuda J, Yokoyama T, Kingetsu I, Yamaguchi N et al (2003) Inhibition of arthritis by systemic administration of endostatin in passive murine collagen induced arthritis. Ann Rheum Dis 62(7):677–679

    PubMed  CAS  Google Scholar 

  169. Yue L, Shen YX, Feng LJ, Chen FH, Yao HW, Liu LH et al (2007) Blockage of the formation of new blood vessels by recombinant human endostatin contributes to the regression of rat adjuvant arthritis. Eur J Pharmacol 567(1–2):166–170

    PubMed  CAS  Google Scholar 

  170. de Bandt M, Grossin M, Weber AJ, Chopin M, Elbim C, Pla M et al (2000) Suppression of arthritis and protection from bone destruction by treatment with TNP-470/AGM-1470 in a transgenic mouse model of rheumatoid arthritis. Arthritis Rheum 43(9):2056–2063

    PubMed  Google Scholar 

  171. Arsenault AL, Lhotak S, Hunter WL, Banquerigo ML, Brahn E (1998) Taxol involution of collagen-induced arthritis: ultrastructural correlation with the inhibition of synovitis and neovascularization. Clin Immunol Immunopathol 86(3):280–289

    PubMed  CAS  Google Scholar 

  172. Peacock DJ, Banquerigo ML, Brahn E (1992) Angiogenesis inhibition suppresses collagen arthritis. J Exp Med 175(4):1135–1138

    PubMed  CAS  Google Scholar 

  173. Peacock DJ, Banquerigo ML, Brahn E (1995) A novel angiogenesis inhibitor suppresses rat adjuvant arthritis. Cell Immunol 160(2):178–184

    PubMed  CAS  Google Scholar 

  174. Oliver SJ, Banquerigo ML, Brahn E (1994) Suppression of collagen-induced arthritis using an angiogenesis inhibitor, AGM-1470, and a microtubule stabilizer, taxol. Cell Immunol 157(1):291–299

    PubMed  CAS  Google Scholar 

  175. Oliver SJ, Cheng TP, Banquerigo ML, Brahn E (1995) Suppression of collagen-induced arthritis by an angiogenesis inhibitor, AGM-1470, in combination with cyclosporin: reduction of vascular endothelial growth factor (VEGF). Cell Immunol 166(2):196–206

    PubMed  CAS  Google Scholar 

  176. Nagashima M, Tanaka H, Takahashi H, Tachihara A, Tanaka K, Ishiwata T et al (2002) Study of the mechanism involved in angiogenesis and synovial cell proliferation in human synovial tissues of patients with rheumatoid arthritis using SCID mice. Lab Invest 82(8):981–988

    PubMed  Google Scholar 

  177. Bernier SG, Lazarus DD, Clark E, Doyle B, Labenski MT, Thompson CD et al (2004) A methionine aminopeptidase-2 inhibitor, PPI-2458, for the treatment of rheumatoid arthritis. Proc Natl Acad Sci USA 101(29):10768–10773

    PubMed  CAS  Google Scholar 

  178. Bernier SG, Taghizadeh N, Thompson CD, Westlin WF, Hannig G (2005) Methionine aminopeptidases type I and type II are essential to control cell proliferation. J Cell Biochem 95(6):1191–1203

    PubMed  CAS  Google Scholar 

  179. Fotsis T, Zhang Y, Pepper MS, Adlercreutz H, Montesano R, Nawroth PP et al (1994) The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumour growth. Nature 368(6468):237–239

    PubMed  CAS  Google Scholar 

  180. Ireson CR, Chander SK, Purohit A, Perera S, Newman SP, Parish D et al (2004) Pharmacokinetics and efficacy of 2-methoxyoestradiol and 2-methoxyoestradiol-bis-sulphamate in vivo in rodents. Br J Cancer 90(4):932–937

    PubMed  CAS  Google Scholar 

  181. Holmdahl R, Jansson L, Meyerson B, Klareskog L (1987) Oestrogen induced suppression of collagen arthritis: I. Long term oestradiol treatment of DBA/1 mice reduces severity and incidence of arthritis and decreases the anti type II collagen immune response. Clin Exp Immunol 70(2):372–378

    PubMed  CAS  Google Scholar 

  182. Josefsson E, Tarkowski A (1997) Suppression of type II collagen-induced arthritis by the endogenous estrogen metabolite 2-methoxyestradiol. Arthritis Rheum 40(1):154–163

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Kennedy Institute of Rheumatology receives a core grant from Arthritis Research Campaign (Registered Charity No. 207711). The authors are grateful for the support of the Marie Curie Research Training Network EURO-RA, funded by the Sixth Framework Programme of the European Union (HL and YR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Paleolog.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khong, T.L., Larsen, H., Raatz, Y. et al. Angiogenesis as a therapeutic target in arthritis: learning the lessons of the colorectal cancer experience. Angiogenesis 10, 243–258 (2007). https://doi.org/10.1007/s10456-007-9081-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-007-9081-1

Keywords

Navigation