Skip to main content
Log in

Elucidation of the mechanisms underlying the angiogenic effects of ginsenoside Rg1 in vivo and in vitro

  • Published:
Angiogenesis Aims and scope Submit manuscript

An Erratum to this article was published on 07 December 2006

Abstract

The major active constituents of ginseng are ginsenosides, and Rg1 is a predominant compound of the total extract. Recent studies have demonstrated that Rg1 can promote angiogenesis in vivo and in vitro. In this study, we used a DNA microarray technology to elucidate the mechanisms of action of Rg1. We report that Rg1 induces the proliferation of HUVECs, monitored using [3H]-thymidine incorporation and Trypan blue exclusion assays. Furthermore, Rg1 (150–600  nM) also showed an enhanced tube forming inducing effect on the HUVEC. Rg1 was also demonstrated to promote angiogenesis in an in vivo Matrigel plug assay, and increase endothelial sprouting in the ex vivo rat aorta ring assay. Differential gene expression profile of HUVEC following treatment with Rg1 revealed the expression of genes related to cell adhesion, migration and cytoskeleton, including RhoA, RhoB, IQGAP1, CALM2, Vav2 and LAMA4. Our results suggest that Rg1 can promote angiogenesis in multiple models, and this effect is partly due to the modulation of genes that are involved in the cytoskeletal dynamics, cell–cell adhesion and migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. 1. Liu CX, Xiao PG. (1992). Recent advances on ginseng research in China. J Ethnopharmacol 36:27–38

    Article  PubMed  CAS  Google Scholar 

  2. 2. Wang BX, Cui JC, Liu AJ, Wu SK. (1983). Studies on the anti-fatigue effect of saponins of stems and leaves of panax ginseng (SSLG). J Tradit Chin Med 3:89–94

    PubMed  CAS  Google Scholar 

  3. 3. Takahashi M, Tokuyama S, Kaneto H. (1992). Anti-stress effect of ginseng on the inhibition of the development of morphine tolerance in stressed mice. Jpn J Pharmacol 59:399–404

    Article  PubMed  CAS  Google Scholar 

  4. 4. Attele AS, Zhou YP, Xie JT, Wu JA, Zhang L, Dey L, Pugh W, Rue PA, Polonsky KS, Yuan CS. (2002). Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 51:1851–1858

    Article  PubMed  CAS  Google Scholar 

  5. 5. Gill CN. (1997). Panax ginseng pharmacology: a nitric oxide link. Biochem Pharmacol 54:1–8

    Article  PubMed  Google Scholar 

  6. 6. Folkman J, Yuen S. (1992). Angiogenesis. J Biol Chem 267:10931–10934

    PubMed  CAS  Google Scholar 

  7. 7. Tonnesen MG, Feng X, Clark RA. (2000). Angiogenesis in wound healing. J Investig Dermatol Symp Proc 5:40–4

    Article  PubMed  CAS  Google Scholar 

  8. 8. Favier J, Corvol P. (2001). Physiological angiogenesis. Therapie 56:455–463

    PubMed  CAS  Google Scholar 

  9. 9. Folkman J. (1974). Tumor angiogenesis. Adv Cancer Res 19:331–358

    Article  PubMed  CAS  Google Scholar 

  10. 10. Walsh DA. (1999). Angiogenesis and arthritis. Rheumatology 38:103–112

    Article  PubMed  CAS  Google Scholar 

  11. 11. Paleolog EM. (2002). Angiogenesis in rheumatoid arthritis. Arthritis Res 3:S81–S90

    Article  Google Scholar 

  12. 12. Funstsu H, Yamasshita H, Noma H, Shimizu E, Yamashita T, Hori S. (2001). Stimulation and inhibition of angiogenesis in diabetic retinopathy. Jpn J Ophthalmol 45, 577–584

    Article  PubMed  Google Scholar 

  13. 13. Morisaki N, Watanabe S, Tezuka M, Zenibayashi M, Shiina R, Koyama N, Kanzaki T, Saito Y. (1995). Mechanism of angiogenic effects of saponin from ginseng Radix rubra in human umbilical vein endothelial cells. Br J Pharmacol 115:1188–1193

    PubMed  CAS  Google Scholar 

  14. 14. Sato K, Mochizuki M, Saiki I, Yoo YC, Samukawa K, Azuma I. (1994). Inhibitory of tumor angiogenesis and metastasis by a saponin of Panax ginseng, ginsenoside-Rb2. Biol Pharm Bull 17:635–639

    PubMed  CAS  Google Scholar 

  15. 15. Tao H, Yao M, Zou S, Zhao D, Qiu H. (2002). Effect of angiogenesis inhibitor Rg3 on the growth and metastasis of gastric cancer in SCID mice. Zhounghua Wai Ke Za Zhi 40:606–608

    Google Scholar 

  16. 16. Shiladitya S, Toh SA, Sellers LA, Skepper JN, Koolwijk P, Leung HW, Yeung HW, Wong RNS, Sassisekharan R, Fan TPD. (2004). Modulating angiogenesis. The Yin and the Yang in Ginseng. Circulation 110:1219–1225

    Article  PubMed  CAS  Google Scholar 

  17. 17. Passaniti A, Taylor RM, Pili R, Yue G, Long PV, Haney JA, Pauly RR, Grant DS, Martin GR. (1992). Methods in laboratory investigation. Lab Invest 67:519–528

    PubMed  CAS  Google Scholar 

  18. 18. Nicosia RF, Ottinetti A. (1990). Modulation of microvascular growth and morphogenesis by reconstituted basement membrane gel in three-dimensional cultures of rat aorta: a comparative study of angiogenesis in matrigel, collagen, fibrin, and plasma clot. In Vitro Cell Dev Biol 26:119–128

    Article  PubMed  CAS  Google Scholar 

  19. 19. Nicosia RF, Ottinetti A. (1990). Growth of microvessels in serum-free matrix culture of aorta. Lab Invest 63:115–122

    PubMed  CAS  Google Scholar 

  20. 20. Hegde P, Qi R, Abernathy K, Gay C, Dharap S, Gaspard R, Hughes JE, Snesrud E, Lee N, Quackenbush J. (2000). Concise guide to cDNA microarray analysis. Biotechnique 29:548–562

    CAS  Google Scholar 

  21. 21. Tabuchi Y, Kondo T, Ogawa R, Mori H. (2002). DNA microarray analysis of genes elicited by ultrasound in human U937 cells. Biochem Biophys Res Commun 290:498–503

    Article  PubMed  CAS  Google Scholar 

  22. 22. Isner JM, Asahara T. (1998). Therapeutic angiogenesis. Front Biosci 3:e49–69

    PubMed  CAS  Google Scholar 

  23. 23. Risau W. (1997). Mechanisms of angiogenesis. Nature 386:671–674

    Article  PubMed  CAS  Google Scholar 

  24. 24. Shinkai K, Akedo H, Mukai M, Imamura F, Isoai A, Kobayashi M, Kitagawa I. (1996). Inhibitory of in vitro tumor cell invasion by ginsenoside Rg3. Jpn J Cancer Res 87:357–362

    PubMed  CAS  Google Scholar 

  25. 25. Lee YJ, Chung E, Lee KY, Lee YH, Huh B, Lee SK. (1997). Ginsenoside-Rg1, one of the major active moleculaes from panax ginseng, is a functional ligand of glucocorticoid receptor. Mol Cell Endocrinol 133:135–140

    Article  PubMed  CAS  Google Scholar 

  26. 26. Chung E, Lee KY, Lee YJ, Lee YH, Lee SK. (1998). Ginsenoside-Rg1 down-regulates glucocorticoid receptor and displays synergistic effects with cAMP. Steroid 63:421–424

    Article  CAS  Google Scholar 

  27. 27. Newton R. (2000). Molecular mechanisms of glucocorticoid action: what is important?. Thorax 55:603–613

    Article  PubMed  CAS  Google Scholar 

  28. 28. Cardena GG, Fan R, Shah V, Sorrentino R, Cirino G, Papapetropoulos A, Sessa WC. (1998). Dynamic activation of endothelial nitric oxide synthease by HSP90. Nature 392:821–824

    Article  PubMed  Google Scholar 

  29. 29. Braga VM, Machesky LM, Hall A, Hotchin NA. (1997). The small GTPase Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. J Cell Biol 137:1421–1431

    Article  PubMed  CAS  Google Scholar 

  30. 30. Fukata M, Nakagawa M, Kuroda S, Kaibuchi K. (1999). Commentary Cell adhesion amd Rho small GTPase. J Cell Sci 112:4491–4500

    PubMed  CAS  Google Scholar 

  31. 31. Nishiyama T, Sasaki T, Takaishi K, Kato M, Yaku H, Araki K, Matsuura Y, Takai Y. (1994). Rac p21 is involved in insulin-induced memebrane ruffling and rho p21 is involved in hepatocyte growth factor- and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced membrane ruffling in KB cells. Mol Cell Biol 14:2447–2456

    PubMed  CAS  Google Scholar 

  32. 32. Ridley AJ, Hall A. (1992). The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399

    Article  PubMed  CAS  Google Scholar 

  33. 33. Takaishi K, Sasaki T, Kato M, Yamochi W, Kuroda S, Nakamura T, Takeichi M, Takai Y. (1994). Involvement of Rho p21 samll GTP-binding protein and its regulator in the HGF-induced cell motility. Oncogene 9:273–279

    PubMed  CAS  Google Scholar 

  34. 34. Schmitz AAP, Govek EE, Bottner B, Aelst LV. (2000). Rho GTPases: signaling, migration, and invasion. Exp Cell Res 261:1–12

    Article  PubMed  CAS  Google Scholar 

  35. 35. Takaishi K, Sasaki T, Kotani H, Nishioka H, Takai Y. (1997). Regulation of cell-cell adhesion by Rac and Rho small G proteins in MDCK cells. J Cell Biol 139:1047–1059

    Article  PubMed  CAS  Google Scholar 

  36. 36. Braga VM, Del MA, Machesky L, Dejana E. (1999). Regulation of cadherin function by Rho and Rac: modulation by junction maturation and cellular context. Mol Biol Cell 10:9–22

    PubMed  CAS  Google Scholar 

  37. 37. Kaibuchi K, Kuroda S, Amano M. (1999). Regukation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem 68:459–486

    Article  PubMed  CAS  Google Scholar 

  38. 38. Kaibuchi K, Kuroda S, Fukata M, Nakagawa M. (1999). Regulation of cadherin-mediated cell-cell adhesion by the Rho family GTPases. Curr Opin Cell Biol 11:591–596

    Article  PubMed  CAS  Google Scholar 

  39. 39. Braga V. (2000). Epithelial cell shape: cadherins and small GTPases. Exp Cell Res 261:83–90

    Article  PubMed  CAS  Google Scholar 

  40. 40. Abe K, Rossman KL, Liu B, Ritola KD, Chiang D, Campbell SL, Burridge K, Der CJ. (2000). Vav2 is an activator of Cdc42, Rac1, and RhoA. J Biol Chem 275:10141–10149

    Article  PubMed  CAS  Google Scholar 

  41. 41. Bustelo XR. (2000). Regulatory and signaling properties of the Vav family. Mol Cell Biol 20:1461–1477

    Article  PubMed  CAS  Google Scholar 

  42. 42. Crespo P, Schuebel KE, Ostrom AA, Gutkind JS, Bustelo XR. (1997). Phosphototyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature 385:169–172

    Article  PubMed  CAS  Google Scholar 

  43. 43. Liu BP, Burridge K. (2000). Vav2 activates rac1, Cdc42, and RhoA downstream from growth factor receptor but not β1 integrins. Mol Cell Biol 20:7160–7169

    Article  PubMed  CAS  Google Scholar 

  44. 44. Aelst LV, Schorey CD. (1997). Rho GTPases and signaling networks. Genes Dev 11:2295–2322

    PubMed  Google Scholar 

  45. 45. Noren NK, Liu BP, Burridge K, Kreft B. (2000). P120 catenin regulates the actin cytoskeleton via Rho family GTPases. J Cell Biol 150:567–579

    Article  PubMed  CAS  Google Scholar 

  46. 46. Kuroda S, Fukata M, Nakagawa M, Fujii K, Nakamura T, Ookubo T, Izawa I, Nagase T. (1998). Role of IQGAP1, a target of small GTPases Cdc42 and Rac1, in regulation of E-cadherin-mediated cell-cell adhesion. Science 281:832–835

    Article  PubMed  CAS  Google Scholar 

  47. 47. Kuroda S, Fukata M, Nakagawa M, Kaibuchi K. (1999). Breakthroughs and views Cdc42, Rac1, and their effector IQGAP1 as molecular switches for cadherin-mediated cell-cell adhesion. Biochem Biophys Res Commun 262:1–6

    Article  PubMed  CAS  Google Scholar 

  48. 48. Fukata M, Kuroda S, Fujii K, Nakamurat T, Shoji I, Matsuura Y, Okawa K, Iwamatsu A, Kikuchi A, Kaibuchi K. (1997). Regulation of cross-linking of actin filament by IQGAP1 a target for Cdc42. J Biol Chem 272:29579–29583

    Article  PubMed  CAS  Google Scholar 

  49. 49. Joyal JL, Roland SA, Ho YD, Huddleston ME, Carr SA, Hart MJ, Scaks DB. (1997). Calmodulin modulates the interaction between IQGAP1 and Cdc42. J Biol Chem 272:15419–15425

    Article  PubMed  CAS  Google Scholar 

  50. 50. Ho YD, Joyal JL, Li ZG, Scaks DB. (1999). IQGAP1 integrates Ca2+/calmodulin and Cdc42 signaling. J Biol Chem 274, 464–470

    Article  PubMed  CAS  Google Scholar 

  51. 51. Li ZG, Kim SH, Higgin JMG, Brennert MB, Sacks DB. (1999). IQGAP1 and calmodulin modulate E-cadherin function. J Biol Chem 274:37885–37892

    Article  PubMed  CAS  Google Scholar 

  52. 52. Bootman MD, Collins TJ, Peppiatt CM, Prothero LS, MacKenzie L, Smet PD, Travers M, Tovry SC, Seo JT, Berridge MJ, Ciccolini F, Lipp P. (2001). Calcium signaling – an overview. Cell Dev Biol 12:3–10

    Article  CAS  Google Scholar 

  53. 53. Tashiro K, Sephel GC, Weeks BSM, Martin GR, Kleinman HK, Yamada Y. (1989). A synthetic peptide containing the IKVAV sequence from the A chain of laminin mediates cell attachment, migration, and neurite outgrowth. J Biol Chem 264:16174–16182

    PubMed  CAS  Google Scholar 

  54. 54. Kleinman HK, Weeks BS, Schnaper HW, Kibbey MC, Yamamura K, Grant DS. (1993). The laminins: a family of basement membrane glycoproteins important in cell differentiation and tumor metastases. Vitam Horm 47:161–186

    Article  PubMed  CAS  Google Scholar 

  55. 55. Grant DS, Tashiro K, Segui RB, Yamada Y, Martin GR, Kleinman HK (1989). Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structure in vitro. Cell 58:933–943

    Article  PubMed  CAS  Google Scholar 

  56. 56. Malinda KM, Nomizu M, Chung M, Delgado M, Kiuratomi Y, Yamada Y, Kleinman HK. (1999). Identification of laminin α1 and β1 chain peptides active for endothelial cell adhesion, tube formation, and aortic sprouting. FASEB J 13:53–62

    PubMed  CAS  Google Scholar 

  57. 57. Gonzales M, Weksler B, Tsuruta D, Goldman RD, Yoon KJ, Hopkinson SB, Flitney FW, Jones JCR. (2000). Structure and function of a vimentin-associated matrix adhesion in endothelial cells. Mol Biol Cell 12:85–100

    Google Scholar 

  58. 58. Greif H, Ben CJ, Shimon T, Bechor F, Eldar H, Livneh E. (1992). The protein kinase C-related PKC-L (eta) gene product is localized in the cell nucleus. Mol Cell Biol 12:1304–1311

    PubMed  CAS  Google Scholar 

  59. 59. Verkman AS, Hoek ANV, Ma T, Frigeri A, Skach WR, Mitra A, Tamarappoo BK, Farinas J. (1996). Water transport across mammalian cell membranes. Am J Physiol 270:C12–C30

    PubMed  CAS  Google Scholar 

  60. 60. Borgnia M, Nielsen S, Engel A, Agre P. (1999). Cellular and molecular biology and the aquaporin water channels. Annu Rev Biochem 68:428–458

    Article  Google Scholar 

  61. 61. Verkman AS, Mitra AK. (2000). Structure and function of aquaporin water channels. Am J Physiol Renal Physiol 278:F13–F28

    PubMed  CAS  Google Scholar 

  62. 62. Matsuzaki T, Tajika Y, Tserentsoodol N, Suzuki T, Hagiwara H, Takata K. (2002). Aquaporins: a water channel family. Anat Sci Int 77:85–93

    Article  PubMed  Google Scholar 

  63. 63. Verkman AS. (2002). Aquaporin water channels and endothelial cell function. J Anat 200:617–627

    Article  PubMed  CAS  Google Scholar 

  64. 64. Banthorpe DV. (1994). Terpenoids. In: Mann J (eds). Natural Products. Longman Scientific and technical, Essex, pp. 331–339

    Google Scholar 

Download references

Acknowledgements

W wish to thank Dr. Shiladitya Sengupta, Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, United Kingdom, for the valuable comments on this manuscript. We also thank Mr. Micheal Tsang and Miss. Emily Leung for their help in the proliferation assay. We are very grateful for the technical assistance in histological staining of Mr. Victor Ma and Mr. Cadmon Lim, Department of Clinical Oncology, Queen Elizabeth Hospital, HK. We also thank Mr. Kevin Kok and Miss. Fiona Luong for their help on Matrigel plug assay. We thank Dr. Simon Lee, Department of biochemistry, Chinese University of Hong Kong, for sharing experience on microarray data analysis. This work was supported by the Earmark Research grants (HKBU 2001/99M, HKBU 2171/03M) of the Research Grant Committee, Hong Kong SAR Government; Faculty Research Grant of the Hong Kong Baptist University (FRG/01-02/I-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricky N.S. Wong.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10456-006-9036-y

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yue, P.Y., Wong, D.Y., Ha, W. et al. Elucidation of the mechanisms underlying the angiogenic effects of ginsenoside Rg1 in vivo and in vitro . Angiogenesis 8, 205–216 (2005). https://doi.org/10.1007/s10456-005-9000-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-005-9000-2

Keywords

Navigation