Skip to main content
Log in

Small fluctuations in the recovery of fusaria across consecutive sampling intervals with unmanned aircraft 100 m above ground level

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

The aerobiology of fungi in the genus Fusarium is poorly understood. Recent work has highlighted the role of Lagrangian coherent structures (LCSs) in the movement of fusaria in the lower atmosphere. Here, we extend this work by examining the relationship between the length of atmospheric sampling intervals with autonomous unmanned aerial vehicles (UAVs) and the recovery of fusaria. UAVs were equipped with an array of eight microbe-sampling devices with four “inner” sampling arms and four “outer” sampling arms. Each set of arms was used to collect consecutive aerobiological samples during 10 min sampling periods at 100 m above ground level at the Kentland Farm in Blacksburg, Virginia. Fifty-one flights (102 consecutive sampling intervals) were conducted in 2010 and 2011. A correlation analysis showed that the counts of fusaria did not vary between the inner and outer sampling arms from consecutive sampling period of 10 min (r = 0.93, P < 0.001), and the frequency of colony counts had similar distributions for samples from the inner and outer sampling arms. An analysis of the temporal variation in the collections of Fusarium showed that the similarity between collections decreased over time. This work supports the idea that atmospheric populations of fusaria are well mixed, and large changes in the recovery of fusaria in the lower atmosphere may be attributed to large-scale phenomena (e.g., LCSs) operating across varying temporal and spatial scales. This work may contribute to effective control measures for diseases causes by fusaria in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aylor, D. E. (2003). Spread of plant disease on a continental scale: Role of aerial dispersal of pathogens. Ecology, 84, 1989–1997.

    Article  Google Scholar 

  • Berek, L., Petri, I. B., Mesterházy, Á., Téren, J., & Molnár, J. (2001). Effects of mycotoxins on human immune functions in vitro. Toxicology in Vitro, 15, 25–30.

    Article  CAS  Google Scholar 

  • Csanady, G. T. (1973). Turbulent diffusion in the environment. Dordrecht: D. Reidel Publishing Company.

    Book  Google Scholar 

  • Dosio, A., Vila-Guerau De Arellano, J., Holtslag, A. M., & Builtjes, P. J. H. (2005). Relating Eulerian and Lagrangian statistics for the turbulent dispersion in the atmospheric convective boundary layer. Journal of the Atmospheric Sciences, 62, 1175–1191.

    Article  Google Scholar 

  • Gifford, F. A. (1987). The time-scale of atmospheric diffusion considered in relation to the universal diffusion function f1. Atmospheric Environment, 21, 1315–1320.

    CAS  Google Scholar 

  • Lekien, F., & Ross, S. D. (2010). The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds. Chaos, 20, 017505.

    Article  Google Scholar 

  • Leslie, J. F., & Summerell, B. A. (2006). The Fusarium laboratory manual. Ames, Iowa: Blackwell Publishing.

    Google Scholar 

  • McMullen, M., Jones, R., & Gallenberg, D. (1997). Scab of wheat and barley: A re-emerging disease of devastating impact. Plant Disease, 81, 1340–1348.

    Article  Google Scholar 

  • Okubo, A., & Levin, S. A. (2001). Diffusion and ecological problems: modern perspectives. New York: Springer.

    Google Scholar 

  • Schmale, D. G., Dingus, B. R., & Reinholtz, C. (2008). Development and application of an autonomous unmanned aerial vehicle for precise aerobiological sampling above agricultural fields. Journal of Field Robotics, 25, 133–147.

    Article  Google Scholar 

  • Schmale, D. G., Leslie, J. F., Zeller, K. A., Saleh, A. A., Shields, E. J., & Bergstrom, G. C. (2006). Genetic structure of atmospheric populations of Gibberella zeae. Phytopathology, 96, 1021–1026.

    Article  CAS  Google Scholar 

  • Schmale, D., Ross, S., Fetters, T., Tallapragada, P., Wood-Jones, A., & Dingus, B. (2012). Isolates of Fusarium graminearum collected 40–320 meters above ground level cause Fusarium head blight in wheat and produce trichothecene mycotoxins. Aerobiologia, 28, 1–11.

    Article  Google Scholar 

  • Senatore, C., & Ross, S. D. (2011). Detection and characterization of transport barriers in complex flows via ridge extraction of the finite time Lyapunov exponent field. International Journal for Numerical Methods in Engineering, 86, 1163–1174.

    Article  Google Scholar 

  • Tallapragada, P., Ross, S. D., & Schmale, D. G. (2011). Lagrangian coherent structures are associated with fluctuations in airborne microbial populations. Chaos, 21, 033122.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank John Cianchetti for his excellent technical assistance with the construction, maintenance, and operation of the UAVs described in this work. We also thank Zolton Bair for his help with fungal cultures and Pavlos Vlachos for helpful discussions. This material is based upon work supported by the National Science Foundation under Grant Numbers DEB-0919088 (Atmospheric transport barriers and the biological invasion of toxigenic fungi in the genus Fusarium) and CMMI-1100263 (Dynamical mechanisms influencing the population structure of airborne pathogens: Theory and observations). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Schmale III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, B., Bozorgmagham, A., Ross, S.D. et al. Small fluctuations in the recovery of fusaria across consecutive sampling intervals with unmanned aircraft 100 m above ground level. Aerobiologia 29, 45–54 (2013). https://doi.org/10.1007/s10453-012-9261-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-012-9261-3

Keywords

Navigation