Skip to main content
Log in

Pollen-mediated gene flow in Himalayan long needle pine (Pinus roxburghii Sargent)

  • Brief Communication
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Pollen migration in Pinus roxburghii has been estimated under two different conditions, viz. isolated single trees and at the fringe of natural forest. Trapping of pollen grains was conducted at geometrically increasing distances, i.e., 0, 5, 10, 20, 40, 80, 160, 320, 640, 1280 and 2560 m from the source. The observations revealed that the scattering of pollen grains was not uniform in all directions and that they travelled up to 2.5 km towards the downhill direction, while in the uphill direction dispersion of pollen grains was restricted to 320 m from the source. Pollen frequency declined rapidly as the distance from the source increased, with the highest densities within 50–100 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Adams, W. T., & Burczyk, J. (2000). Magnitude and implication of geneflow in gene conservation reserves. In A. Young, D. Boshier, & T. Boyle (Eds.), Forest conservation genetics: Principle and practice (pp. 215–224). Collingwood, Australia: CSIRO Publishing.

    Google Scholar 

  • Bateman, A. J. (1947). Contamination in seed crops. II. Wind pollination. Heredity, 1, 235–246.

    Google Scholar 

  • Bramlett, D. L. (1981). Effectiveness of wind pollination in seed orchards. In E. C. Franklin (Ed.), Pollen management handbook (pp. 10–14). USDA Forest Service, Agric. Handbook 587.

  • Burczyk, J., DiFazio, S. P., & Adams, W. T. (2004a). Gene flow in forest trees: How far do genes really travel? Forest Genetics, 11, 1–14.

    Google Scholar 

  • Burczyk, J., Lewandowski, A., & Chalupka, W. (2004b). Local pollen dispersal and distant gene flow in Norway spruce (Picea abies (L.) Karst.). Forest Ecology and Mangement, 197, 39–48.

    Article  Google Scholar 

  • Condit, R., Pitman, N., Leigh, E. G. Jr., Chave, J., Terborgh, J., Foster, R. B., Nunez, P., Aguilar, S., Valencia, R., Villa, G., Muller-Landau, H. C., Losos, E., & Hubbell, S. P. (2002). Beta-diversity in tropical forest trees. Science, 295, 666–669.

    Article  CAS  Google Scholar 

  • Connell, J. H., & Slatyer, R. O. (1977). Mechanisms of selection in natural communities and their role in community stability and organization. The American Naturalist, 111, 1119–1144.

    Article  Google Scholar 

  • Di-Giovanni, F., Kevan, P. G., & Arnold, J. (1996). Lower planetary boundary layer profiles of atmospheric conifer pollen above a seed orchard in northern Ontario, Canada. Forest Ecology and Mangement, 83, 87–97.

    Article  Google Scholar 

  • Ehrlin, J., & Eriksson, O. (2000). Dispersal limitation and patch occupancy in forest herbs 29. Ecology, 81, 1667–1674.

    Google Scholar 

  • Ellstrand, N. C. (1992). Gene flow by pollen: Implications for plant conservation genetics. Oikos, 63, 77–86.

    Article  Google Scholar 

  • Ferdy, J. B., & Austerlitz, F. (2002). Extinction and introgression in a community of partially cross-fertile plant species. The American Naturalist, 160, 74–86.

    Article  Google Scholar 

  • Hamrick, J. L., & Nason, J. D. (2000). Geneflow in forest trees. In A. Young, D. Boshier, & T. Boyle (Eds.), Forest conservation genetics: Principle and practice (pp. 81–90). Collingwood, Australia: CSIRO Publishing.

    Google Scholar 

  • Handel, S. N. (1983). Pollination ecology, plant population structure and gene flow. In L. Real (Ed.), Pollination biology (pp. 163–211). New York: Academic Press Inc.

    Google Scholar 

  • Hanski, I., & Gilpin, M. (1997). Metapopulation biology: Ecology, genetics and evolution. London: Academic Press.

    Google Scholar 

  • Harju, A. M., & Nikkanen, T. (1996). Reproductive success of orchard and nonorchard pollens during different stages of pollen sheding in a Scots pine seed orchard. Canadian Journal of Forest Research, 26, 1096–1102.

    Google Scholar 

  • Hjelmroos, M. (1991). Evidence of long-distance transport of Betula pollen. Grana, 30, 215–228.

    Google Scholar 

  • Khanduri, V. P., & Sharma, C. M. (2002). Pollen productivity variations, microsporangium dehiscence and pollen flow in Himalayan Cedar (Cedrus deodara Roxb. ex D. Don). Annals of Botany, 89, 587–593.

    Article  CAS  Google Scholar 

  • Khanduri, V. P., & Sharma, C.M. (2007). Wind pollination in Pinus roxburghii. Progress in Natural Science, 17(1), 32–38.

    Article  Google Scholar 

  • Khanduri, V. P. (1999). The ecology of anther dehiscence, pollen productivity, release and multilocational dispersal in Pinus roxburghii Sargent. PhD Thesis, HNB Garhwal University, Srinagar Garhwal, India.

  • Konuma, A., Tsumura, Y., Lee, C. T., Lee, S. L., & Okuda, T. (2000). Estimation of gene flow in the tropical-rainforest tree Neobalanocarpus heimii (Dipterocarpaceae), inferred from paternity analysis. Molecular Ecology, 9, 1843–1852.

    Article  CAS  Google Scholar 

  • Lande, R. (1988). Genetics and demography in biological conservation. Science, 241, 1455–1460.

    Article  CAS  Google Scholar 

  • Lanner, R. M. (1966). Needed: A new approach to the study of pollen dispersion. Silvae Genetica, 15, 50–52.

    Google Scholar 

  • Lenormand, T. (2002). Gene flow and the limits to natural selection. Trends in Ecology & Evolution, 17, 183–189.

    Article  Google Scholar 

  • Levin, D. A., & Kerster, H. W. (1974). Gene flow in seed plants. In T. Dobzhansky, M. T. Hecht, & W. C. Steere (Eds.), Evolutionary biology (Vol. 7, pp. 139–220). New York: Plenum Press.

    Google Scholar 

  • Levin, D. A. (1981). Dispersal versus gene flow in plants. Annals of the Missouri Botanical Garden, 68, 233–253.

    Article  Google Scholar 

  • Levin, D. A. (1983). Plant parentage: An alternative view of breeding structure of populations. In C. E. King & P. S. Dawson (Eds.), Population biology retrospect and prospect (pp. 171–188). New York: Columbia Univ. Press.

    Google Scholar 

  • Libby, W. J., Stettler, R. F., & Seitz, F. W. (1969). Forest genetics and forest tree breeding. Annual Review of Genetics, 3, 469–494.

    Article  Google Scholar 

  • Lindgren, D., Paule, L., Shen, X. H., Yazdani, R., Segerstrom, U., Wallin, J. E., & Lejdebro, M. L. (1995). Can viable pollen carry Scots pine genes over long distances? Grana, 34, 64–69.

    Article  Google Scholar 

  • Rogers, C. S., & Levetin, E. (1998). Evidence of long-distance transport of mountain cedar pollen into Tulsa, Oklahoma. International Journal of Biometeorology, 42, 65–72.

    Article  Google Scholar 

  • Schemske, D. W., Husband, B. C., Ruckelshaus, M. H., Goodwillie, C., Parker, I. M., & Bishop, J. G. (1994). Evaluating to the conservation of rare and endangered plants. Ecology, 75, 584–606.

    Article  Google Scholar 

  • Schuster, W. S. F., & Mitton, J. B. (2000). Paternity and gene dispersal in limber pine (Pinus flexilis James). Heredity, 84, 348–361.

    Article  CAS  Google Scholar 

  • Silen, R. R. (1962). Pollen dispersal considerations for Douglas fir. Journal of Forestry, 60, 790–795.

    Google Scholar 

  • Wang, C. W., Perry, T. O., & Johnson, A. G. (1960). Pollen dispersion of slash pine (Pinus elliottii Engelm.) with special reference to seed orchard management. Silvae Genetica, 9, 78–86.

    Google Scholar 

  • White, G. M., Boshier, D. H., & Powell, W. (2002). Increased pollen flow counteracts fragmentation in a tropical dry forest: As example from Swietenia humilis Zuccarini. Proceedings of the National Academy of Sciences of the United States of America, 99, 2038–2042.

    Article  CAS  Google Scholar 

  • Wright, J. W. (1952). Pollen dispersion of some forest trees. Northeast forest experiment station. Station Paper, 46, 42pp.

  • Wright, J. W. (1953). Pollen dispersion studies: Some practical applications. Journal of Forestry, 51, 114–118.

    Google Scholar 

  • Wright, S. (1946). Isolation by distance under diverse systems of mating. Genetics, 31, 39–59.

    CAS  Google Scholar 

  • Xie, C. Y., & Knowles, P. (1994). Mating system and effective pollen immigration in a Norway spruce (Picea abies (L.) Karst) plantation. Silvae Genetica, 43, 48–52.

    Google Scholar 

Download references

Acknowledgements

This study has been supported by the Indian Council of Forestry Research and Education, DehraDun, Vide [project no. 37-11 ICFRE (R)]. The authors are thankful to both the anonymous reviewers of an earlier draft of this manuscript and to Prof. S. R. Ansari of the Department of Mathematics, HNB Garhwal University, Srinagar Garhwal, for his help in mathematical modeling of the pollen dispersion data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Khanduri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, C.M., Khanduri, V.P. Pollen-mediated gene flow in Himalayan long needle pine (Pinus roxburghii Sargent). Aerobiologia 23, 153–158 (2007). https://doi.org/10.1007/s10453-007-9056-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-007-9056-0

Keywords

Navigation