Skip to main content
Log in

The importance of morphological versus chemical defences for the bloom-forming cyanobacterium Microcystis against amoebae grazing

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Amoebae grazing can be an important loss factor for blooms of the common cyanobacterium Microcystis. Some Microcystis strains seem to be protected against amoebae grazing, but it is unclear whether this is achieved by their colony morphology or biochemically. These factors were investigated in grazing experiments using two Microcystis-grazing amoebae (Korotnevella sp. and Vannella sp.) and two Microcystis strains with differing colony morphology (aeruginosa and viridis morphotype) and different sensitivity to amoebae grazing. Amoebae did not increase in density and failed to reduce the growth rate of cultures of the amoebae insensitive viridis strain, irrespective of whether the Microcystis strain was colonial or unicellular. This suggests that the extended mucilage matrix surrounding viridis colonies is not the main defence mechanism against amoebae grazing. At the same time, the growth rate of both unicellular and colonial cultures of the amoebae-sensitive aeruginosa strain was heavily reduced by the growing amoebae. The addition of filtered viridis-conditioned medium to aeruginosa cultures significantly decreased both amoebae growth and its effect on aeruginosa growth rates, which indicates that extracellular compounds constitutively produced by viridis are at least partially responsible for their insensitivity to amoebae grazing. These results demonstrate the potential importance of chemical interactions between lower trophic levels (protists) for Microcystis bloom dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen PG, Dawidowicz EA (1990) Phagocytosis in Acanthamoeba 1 A mannose receptor is responsible for the binding and phagocytosis of yeast. J Cell Physiol 145(3):508–513

    Article  PubMed  CAS  Google Scholar 

  • Anderson OR, Rogerson A (1995) Annual abundances and growth-potential of Gymnamoebae in the Hudson Estuary with comparative data from the Firth of Clyde. Eur J Protistol 31(2):223–233

    Article  Google Scholar 

  • Becker S, Matthijs HCP, Van Donk E (2010) Biotic factors in induced defence revisited: cell aggregate formation in the toxic cyanobacterium Microcystis aeruginosa PCC 7806 is triggered by spent Daphnia medium and disrupted cells. Hydrobiologia 644(1):159–168

    Article  CAS  Google Scholar 

  • Berry JP, Gantar M, Perez MH, Berry G, Noriega FG (2008) Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and insecticides. Mar Drugs 6(2):117–146

    Article  PubMed  CAS  Google Scholar 

  • Brautigan DL (1995) Flicking the switches - phosphorylation of serine/threonine protein phosphatases. Semin Cancer Biol 6(4):211–217

    Article  PubMed  CAS  Google Scholar 

  • Brunberg AK (1999) Contribution of bacteria in the mucilage of Microcystis spp (Cyanobacteria) to benthic and pelagic bacterial production in a hypereutrophic lake. Fems Microbiol Ecol 29(1):13–22

    Article  CAS  Google Scholar 

  • Camacho FA, Thacker RW (2006) Amphipod herbivory on the freshwater cyanobacterium Lyngbya wollei: Chemical stimulants and morphological defenses. Limnol Oceanogr 51(4):1870–1875

    Article  CAS  Google Scholar 

  • Czarnecki O, Henning M, Lippert I, Welker M (2006) Identification of peptide metabolites of Microcystis (Cyanobacteria) that inhibit trypsin-like activity in planktonic herbivorous Daphnia (Cladocera). Environ Microbiol 8(1):77–87

    Article  PubMed  CAS  Google Scholar 

  • Dao TS, Do-Hong LC, Wiegand C (2010) Chronic effects of cyanobacterial toxins on Daphnia magna and their offspring. Toxicon 55(7):1244–1254

    Article  PubMed  CAS  Google Scholar 

  • Declerck P, Behets J, de Keersmaecker B, Ollevier F (2007) Receptor-mediated uptake of Legionella pneumophila by Acanthamoeba castellanii and Naegleria lovaniensis. J Appl Microbiol 103(6):2697–2703

    Article  PubMed  CAS  Google Scholar 

  • Demott WR (1999) Foraging strategies and growth inhibition in five daphnids feeding on mixtures of a toxic cyanobacterium and a green alga. Freshw Biol 42(2):263–274

    Article  Google Scholar 

  • Ferrao AD, Da Costa SM, Ribeiro MGL, Azevedo S (2008) Effects of a saxitoxin-producer strain of Cylindrospermopsis raciborskii (Cyanobacteria) on the swimming movements of cladocerans. Environ Toxicol 23(2):161–168

    Article  Google Scholar 

  • Forni C, Telo FR, Caiola MG (1997) Comparative analysis of the polysaccharides produced by different species of Microcystis (Chroococcales, Cyanophyta). Phycologia 36(3):181–185

    Article  Google Scholar 

  • Fulton RS, Paerl HW (1987) Toxic and inhibitory effects of the blue-green-alga Microcystis-aeruginosa on herbivorous zooplankton. J Plankton Res 9:837–855

    Article  Google Scholar 

  • Fyda J, Fialkowska E, Pajdak-Stos A (2010) Dynamics of cyanobacteria-ciliate grazer activity in bitrophic and tritrophic microcosms. Aquat Microb Ecol 59(1):45–53

    Article  Google Scholar 

  • Gademann K, Portmann C (2008) Secondary metabolites from cyanobacteria: complex structures and powerful bioactivities. Curr Org Chem 12(4):326–341

    Article  CAS  Google Scholar 

  • Guillard RRL, Lorenzen CL (1972) Yellow-green algae with chlorophyllide C. J Phycol 8:10–14

    CAS  Google Scholar 

  • Ha K, Jang MH, Takamura N (2004) Colony formation in planktonic algae induced by zooplankton culture media filtrate. J Freshwater Ecol 19(1):9–16

    Article  Google Scholar 

  • Hansson LA, Gustafsson S, Rengefors K, Bomark L (2007) Cyanobacterial chemical warfare affects zooplankton community composition. Freshw Biol 52(7):1290–1301

    Article  CAS  Google Scholar 

  • Ianora A, Miralto A, Poulet SA, Carotenuto Y, Buttino I, Romano G, Casotti R, Pohnert G, Wichard T, Colucci-D’amato L, Terrazzano G, Smetacek V (2004) Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature 429(6990):403–407

    Article  PubMed  CAS  Google Scholar 

  • Joung SH, Kim CJ, ahn CY, Jang KY, Boo SM, Oh HM (2006) Simple method for a cell count of the colonial cyanobacterium, Microcystis sp. J Microbiol 44(5):562–565

    PubMed  Google Scholar 

  • Jungmann D (1995) Isolation, purification, and characterization of new Daphnia-toxic compound from axenic Microcystis flos-aquae strain PCC7806. J Chem Ecol 21(11):1665–1676

    Article  CAS  Google Scholar 

  • Kehr JC, Zilliges Y, Springer A, Disney MD, Ratner DD, Bouchier C, Seeberger PH, Tandeau de Marsac N, Dittmann E (2006) A mannan binding lectin is involved in cell–cell attachment in a toxic strain of Microcystis aeruginosa. Mol Microbiol 59:893–906

    Article  PubMed  CAS  Google Scholar 

  • Kim BR, Nakan S, Kim BH, Han MS (2006) Grazing and growth of the heterotrophic flagellate Diphylleia rotans on the cyanobacterium Microcystis aeruginosa. Aquat Microb Ecol 45(2):163–170

    Article  Google Scholar 

  • Komárková J, Šimek K (2003) Unicellular and colonial formations of picoplanktonic cyanobacteria under variable environmental conditions and predation pressure. Arch Hydrobiol Alg Stud 109:327–340

    Google Scholar 

  • Kuhlmann HW, Kusch J, Heckmann K (1999) Predator induced defenses in ciliated protozoa. In: Tollrian R, Harvell CD (eds) The ecology and evolution of inducible defenses. Princeton University Press, New Jersey, pp 142–155

    Google Scholar 

  • Lampert W (1987) Laboratory studies on zooplankton-cyanobacteria interactions. New Zeal J Mar Fresh 21:483–490

    Article  Google Scholar 

  • Lampert W, Tollrian R, Stibor H (1994) Chemical induction of defense-mechanisms in fresh-water animals. Naturwissenschaften 81(9):375–382

    Article  Google Scholar 

  • Luo W, Pflugmacher F, Proschold T, Walz N, Krienitz L (2006) Genotype versus phenotype variability in Chlorella and Micractinium (Chlorophyta, Trebouxiophyceae). Protist 157(3):315–333

    Article  PubMed  CAS  Google Scholar 

  • Lürling M, van Donk E (1996) Zooplankton-induced unicell-colony transformation in Scenedesmus acutus and its effects on growth of herbivore Daphnia. Oecologia 108(3):432–437

    Article  Google Scholar 

  • Maruyama T, Kato K, Yokoyama A, Tanaka T, Hiraishi A, Park HD (2003) Dynamics of microcystin-degrading bacteria in mucilage of Microcystis. Microbial Ecol 46(2):279–288

    Article  CAS  Google Scholar 

  • Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45(3):569–579

    Article  CAS  Google Scholar 

  • Nishibe Y, Kawabata Z, Nakano S (2002) Grazing on Microcystis aeruginosa by the heterotrophic flagellate Collodictyon triciliatum in a hypertrophic pond. Aquat Microb Ecol 29(2):173–179

    Article  Google Scholar 

  • Nishibe Y, Manage PM, Kawabata Z, Nakano S (2004) Trophic coupling of a testate amoeba and Microcystis species in a hypertrophic pond. Limnology 5(2):71–76

    Article  Google Scholar 

  • Otsuka S, Suda S, Shibata S, Oyaizu H, Matsumoto S, Watanabe MM (2001) A proposal for the unification of five species of the cyanobacterial genus Microcystis Kutzing ex Lemmermann 1907 under the rules of the Bacteriological Code. Int J Syst Evol Micr 51:873–879

    Article  CAS  Google Scholar 

  • Rengefors K, Karlsson I, Hansson L-A (1998) Algal cyst dormancy: a temporal escape from herbivory. Proc R Soc Lond B 265:1353–1358

    Article  Google Scholar 

  • Reynolds CS (2007) Variability in the provision and function of mucilage in phytoplankton: facultative responses to the environment. Hydrobiologia 578(1):37–45

    Article  Google Scholar 

  • Rogerson A, Gwaltney C (2000) High numbers of naked amoebae in the planktonic waters of a mangrove stand in southern Florida, USA. J Eukaryot Microbiol 47(3):235–241

    Article  PubMed  CAS  Google Scholar 

  • Rogerson A, Anderson OR, Vogel C (2003) Are planktonic naked amoebae predominately floc associated or free in the water column? J Plankton Res 25(11):1359–1365

    Article  Google Scholar 

  • Rohrlack T, Hyenstrand P (2007) Fate of intracellular microcystins in the cyanobacterium Microcystis aeruginosa (Chroococcales, Cyanophyceae). Phycologia 46(3):277–283

    Article  Google Scholar 

  • Rohrlack T, Henning M, Kohl JG (1999) Mechanisms of the inhibitory effect of the cyanobacterium Microcystis aeruginosa on Daphnia galeata’s ingestion rate. J Plankton Res 21(8):1489–1500

    Article  Google Scholar 

  • Rohrlack T, Dittmann E, Borner T, Christoffersen K (2001) Effects of cell-bound microcystins on survival and feeding of Daphnia spp. Appl Environ Microb 67(8):3523–3529

    Article  CAS  Google Scholar 

  • Rohrlack T, Christoffersen K, Hansen PE, Zhang W, Czarnecki O, Henning M, Fastner J, Erhard M, Neilan BA, Kaebernick M (2003) Isolation, characterization, and quantitative analysis of microviridin J, a new Microcystis metabolite toxic to Daphnia. J Chem Ecol 29(8):1757–1770

    Article  PubMed  CAS  Google Scholar 

  • Sarnelle O, Gustafsson S, Hansson LA (2010) Effects of cyanobacteria on fitness components of the herbivore Daphnia. J Plankton Res 32(4):471–477

    Article  CAS  Google Scholar 

  • Selander E, Thor P, Toth G, Pavia H (2006) Copepods induce paralytic shellfish toxin production in marine dinoflagellates. Proc R Soc B 273(1594):1673–1680

    Article  PubMed  CAS  Google Scholar 

  • Shi LM, Cai YF, Yang HL, Xing P, Li PF, Kong LD, Kong FX (2009) Phylogenetic diversity and specificity of bacteria associated with Microcystis aeruginosa and other cyanobacteria. J Environ Sci-China 21(11):1581–1590

    Article  PubMed  Google Scholar 

  • Sivonen K, Jones G (1999) Cyanobacterial Toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E & FN Spon, London, pp 41–111

    Google Scholar 

  • Sønstebø JH, Rohrlack T (2011) Possible implications of chytrid parasitism for population subdivision in freshwater cyanobacteria of the genus Planktothrix. Appl Environ Microb 77(4):1344–1351

    Article  Google Scholar 

  • Tollrian R, Harvell CD (1999) The ecology and evolution of inducible defenses. Princeton University Press, Princeton

    Google Scholar 

  • Van Donk E, Cerbin S, Wilken S, Helmsing NR, Ptacnik R, Verschoor AM (2009) The effect of a mixotrophic chrysophyte on toxic and colony-forming cyanobacteria. Freshw Biol 54(9):1843–1855

    Article  Google Scholar 

  • van Gremberghe I, Vanormelingen P, Vanelslander B, Van der Gucht K, D’Hondt S, De Meester L, Vyverman W (2009) Genotype-dependent interactions among sympatric Microcystis strains mediated by Daphnia grazing. Oikos 118(11):1647–1658

    Article  Google Scholar 

  • van Gremberghe I, Leliaert F, Mergeay J, Vanormelingen P, Van der Gucht K, Debeer A-E, Lacerot G, De Meester L, Vyverman W (2011) Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa indicates global dispersal and true cosmopolitanism. Plos One 6:e19561

    Article  PubMed  Google Scholar 

  • Van Wichelen J, van Gremberghe I, Vanormelingen P, Debeer A-E, Leporcq B, Menzel D, Codd GA, Descy JP, Vyverman W (2010) Strong effects of amoebae grazing on the biomass and genetic structure of a Microcystis bloom (Cyanobacteria). Environ Microbiol 12(10):2797–2813

    PubMed  Google Scholar 

  • Verschoor AM, van der Stap I, Helmsing NR, Lurling M, van Donk E (2004) Inducible colony formation within the Scenedesmaceae: Adaptive responses to infochemicals from two different herbivore taxa. J Phycol 40(5):808–814

    Article  Google Scholar 

  • Waite AM, Olson RJ, Dan HG, Passow U (1995) Sugar-containing compounds on the cell surfaces of marine diatoms measured using concanavalin A and flow cytometry. J Phycol 31(6):925–933

    Article  CAS  Google Scholar 

  • Welker M, Sejnohova L, Nemethova D, von Dohren H, Jarkovsky J, Marsalek B (2007) Seasonal shifts in chemotype composition of Microcystis sp communities in the pelagial and the sediment of a shallow reservoir. Limnol Oceanogr 52(2):609–619

    Article  CAS  Google Scholar 

  • Wilken S, Wiezer S, Huisman J, Van Donk E (2010) Microcystins do not provide anti-herbivore defense against mixotrophic flagellates. Aquat Microb Ecol 59(3):207–216

    Article  Google Scholar 

  • Yang Z, Kong FX, Cao HS, Shi XL (2005) Observation on colony formation of Microcystis aeruginosa induced by filtered lake water under laboratory conditions. Ann Limnol-Int J Lim 41(3):169–173

    Article  Google Scholar 

  • Yang Z, Kong FX, Shi XL, Cao HS (2006) Morphological response of Microcystis aeruginosa to grazing by different sorts of zooplankton. Hydrobiologia 563:225–230

    Article  Google Scholar 

  • Yang Z, Kong FX, Shi XL, Zhang M, Xing P, Cao HS (2008) Changes in the morphology and polysaccharide content of Microcystis aeruginosa (Cyanobacteria) during flagellate grazing. J Phycol 44(3):716–720

    Article  Google Scholar 

  • Yang Z, Kong FX, Zhang M, Yu Y, Qian SQ (2009) Effect of filtered cultures of flagellate Ochromonas sp on colony formation in Microcystis aeruginosa. Int Rev Hydrobiol 94(2):143–152

    Article  CAS  Google Scholar 

  • Zhang XM, Watanabe MM (2001) Grazing and growth of the mixotrophic chrysomonad Poterioochromonas malhamensis (Chrysophyceae) feeding on algae. J Phycol 37(5):738–743

    Article  Google Scholar 

  • Zhang M, Kong FX, Tan X, Yang Z, Cao HS, Xing P (2007) Biochemical, morphological, and genetic variations in Microcystis aeruginosa due to colony disaggregation. World J Microb Biot 23(5):663–670

    Article  CAS  Google Scholar 

  • Zhang X, Hu HY, Hong Y, Yang J (2008) Isolation of a Poterioochromonas capable of feeding on Microcystis aeruginosa and degrading microcystin-LR. FEMS Microbiol Lett 288(2):241–246

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank Stina Drakare from the Swedish University of Agricultural Sciences for providing us with Microcystis bloom samples from Lake Mälaren in Sweden and Karen Soenen, Lancelot Blondeel and Ahmed Abdul Jabbar for technical assistance during the experiments. Two anonymous reviewers gave valuable and highly appreciated comments that have lead to a considerable improvement of this paper. P.V. is a postdoctoral research fellow with the Research Foundation – Flanders (FWO). This research was financially supported by the BELSPO (Belgian Science Policy) project B-BLOOMS2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen Van Wichelen.

Additional information

Handling Editor: Bas W. Ibelings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Wichelen, J., van Gremberghe, I., Vanormelingen, P. et al. The importance of morphological versus chemical defences for the bloom-forming cyanobacterium Microcystis against amoebae grazing. Aquat Ecol 46, 73–84 (2012). https://doi.org/10.1007/s10452-011-9382-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-011-9382-8

Keywords

Navigation