Skip to main content

Advertisement

Log in

Laboratory investigation on community composition, emergence patterns and biomass of wood-inhabiting Chironomidae (Diptera) from a sandy lowland stream in Central Europe (Germany)

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Wood-inhabiting chironomid communities were investigated from June 1998 to July 1999 by laboratory rearing of randomly collected submerged branches from a headwater and mid-reach site of a sandy lowland stream, separated by an impoundment used for fishery purposes. Total annual emergence (males and females) from headwater samples was higher (2551 ind m–2 y–1) compared to the mid-reach (1576 ind m–2 y–1), which could be due to disturbances caused by frequent impoundment openings resulting in high discharge events. Chironomid community from branches comprised three subfamilies, with Orthocladiinae (18 species, 2189 ind m–2 y–1) clearly predominating at the headwater (total of 36 species). Mid-reach samples (total of 48 species) showed similar emergent numbers of Orthocladiinae (19 species, 786 ind m–2 y–1) and Chironominae (26 species, 764 ind m–2 y–1). Tanypodinae were caught very rarely in the laboratory emergence (12 ind m–2 y–1 at both sites). Shannon-Wiener diversity index for the mid-reach chironomid community was higher (2.52) than for the headwater community (1.68). Chironomid species composition on woody debris was similar between stream sites, with a Sørensen index of 0.75, but showed different dominance structures indicated by a Wainstein index of 0.26. Total adult biomass (in the manner of dry mass) during the study period was higher for wood-dwelling chironomids from the headwater (158.2 mg m–2 y–1) compared to the mid-reach (123.8 mg m–2 y–1), but individual biomass was higher for mid-reach chironomids (0.079 mg ind–1 vs. 0.062 mg ind–1 at the headwater), indicating the predominance of larger species. Total biomass of wood-inhabiting chironomids in the investigated lowland stream was low compared to other field emergence studies, which could be attributed to the laboratory approach for investigating the emergence from a single substrate type (submerged wood) instead of the integrative field surveys where chironomids from all habitats were caught. Main reason for the lack of chironomid species closely associated to wood in this sandy lowland stream could be infrequent but episodic disurbances caused by the anthropogenic induced highly fluctuating discharge regime of the downstream study site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson N.H. 1989. Xylophagous Chironomidae from Oregon streams. Aquatic Insects 11: 33–45.

    Google Scholar 

  • Armitage P., Cranston P.S. and Pinder L.C.V. 1995. The Chironomidae: The Biology and Ecology of Non-Biting Midges. Chapman and Hall, London, UK.

    Google Scholar 

  • Aschemeier C. 1996. Abiotische Milieufaktoren und Lebensgemeinschaften in unterschiedlich stark anthropogen überformten Gewässerabschnitten eines Fließgewässersystems der Westfälischen Bucht (Ladberger Mühlenbach)-ein Beitrag zur Typisierung von Tieflandbächen. Ph.D thesis. University of Muenster, Schüling Verlag, Münster, Germany, 1997.

    Google Scholar 

  • Bass D. 1986. Habitat ecology of chironomid larvae of the Big Thicket stream. Hydrobiologia 134: 29–41.

    Google Scholar 

  • Benke A.C. 1998. Production dynamics of riverine chironomids: extremely high biomass turnover rates of primary consumers. Ecology 79: 899–910.

    Google Scholar 

  • Benke A.C., van Arsdall T.C. and Gillespie D.M. 1984. Invertebrate productivity in a subtropical blackwater river: the importance of habitat and life history. Ecological Monographs 54: 25–63.

    Google Scholar 

  • Böttger K. and Rudow A. 1995. Die Chironomidae (Diptera, Nematocera) aus Emergenzfängen des norddeutschen Tieflandbaches Kossau. Limnologica 25: 49–60.

    Google Scholar 

  • Borkent A. 1984. The systematics and phylogeny of the Stenochironomus complex (Xestochironomus, Harrisius, and Stenochironomus) (Diptera: Chironomidae). Memoirs of the Entomological Society of Canada 128: 1–269.

    Google Scholar 

  • Bunn S.E. and Arthington A.H. 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Management 30: 492–507.

    Google Scholar 

  • Cleven E.-J. 1999. An improved method of taking cores in sandy sediments. Arch. Hydrobiol. 147: 65–72.

    Google Scholar 

  • Cranston P.S. and Oliver D.R. 1988. Aquatic xylophagous Orthocladiinae-systematics and ecology. Spixiana Suppl. 14: 143–154.

    Google Scholar 

  • Gaschignard O. and Berly A. 1987. Impact of large discharge fluctuations on the macroinvertebrate populations downstream of a dam.. In: Craig J.F. and Kemper J.B. (eds), Regulated Streams: Advances in Ecology. Plenum Press, New York, USA, pp. 145–157.

    Google Scholar 

  • Hax C.L. and Golladay S.W. 1998. Flow disturbance of macroinvertebrates inhabiting sediments and woody debris in a prairie stream. Am. Midl. Nat. 139: 210–223.

    Google Scholar 

  • Hering D., Kail J., Eckert S., Gerhard M., Meyer E.I., Mutz M., Reich M. and Weiß I. 2000. Coarse woody debris quantity and distribution in Central European streams. Int. Rev. Hydrobiol. 85: 5–23.

    Google Scholar 

  • Hoffmann A. and Hering D. 2000. Wood-associated macroinvertebrate fauna in Central European streams. Int. Rev. Hydrobiol. 85: 25–48.

    Google Scholar 

  • Jackson J.K. and Fisher S.G. 1986. Secondary production, emergence, and export of aquatic insects of a Sonoran desert stream. Ecology 67: 629–638.

    Google Scholar 

  • Kaufman M.G. and King R.H. 1987. Colonization of wood substrates by the aquatic xylophage Xylotopus par (Diptera: Chironomidae) and a description of its life history. Can. J. Zool. 65: 2280–2286.

    Google Scholar 

  • Lindegaard C. and Brodersen K.P. 1995. Distribution of Chironomidae (Diptera) in the river continuum. In: Cranston P. (ed.), Chironomids: From Genes to Ecosystems. CSIRO, East Melbourne, Australia, pp. 257–271.

    Google Scholar 

  • Lindegaard C. and Mortensen E. 1988. Abundance, life history and production of Chironomidae (Diptera) in a Danish lowland stream. Arch. Hydrobiol. Suppl. 81: 563–587.

    Google Scholar 

  • Lindegaard-Petersen C. 1972. An ecological investigation of the Chironomidae (Diptera) from a Danish lowland stream (Linding Å). Arch. Hydrobiol. 69: 465–507.

    Google Scholar 

  • Mangelsdorf L., Scheurmann K. and Weiß F.-H. 1990. River Morphology. Springer Verlag, Berlin, Germany.

    Google Scholar 

  • McKie B. and Cranston P.S. 2001. Colonisation of experimentally immersed wood in south eastern Australia: responses of feeding groups to changes in riparian vegetation. Hydrobiologia 452: 1–14.

    Google Scholar 

  • Nilsen H.C. and Larimore R.W. 1973. Establishment of invertebrate communities on log substrates in the Kaskasia river, Illinois. Ecology 54: 367–374.

    Google Scholar 

  • Connor N.A. 1992. Quantification of submerged wood in a lowland Australian stream system. Freshwat. Biol. 27: 387–395.

    Google Scholar 

  • Otto C.J. 1991. Benthonuntersuchungen am Belauer See (Schleswig-Holstein): Eine ökologische, phänologische und produktionsbiologische Studie unter besonderer Berücksichtigung der merolimnischen Insekten. Ph.D thesis. University of Kiel, Kiel, Germany.

    Google Scholar 

  • Palmer M.A., Arensburger P., Martin A.P. and Denman D.W. 1996. Disturbance and patch-specific responses: the interactive effects of woody debris and floods on lotic invertebrates. Oecologia 105: 247–257.

    Google Scholar 

  • Pereira C.R.D., Anderson N.H. and Dudley T. 1982. Gut content analysis of aquatic insects from wood substrates. Melanderia 39: 23–33.

    Google Scholar 

  • Phillips E.C. 1993. Aquatic Insects and Fishes Associated with Coarse Woody Debris in Northwest Arkansas Streams. Ph.D thesis. University of Arkansas, Fayetteville, Arkansas, USA.

    Google Scholar 

  • Phillips E.C. and Kilambi R.V. 1994. Use of coarse woody debris by Diptera in Ozark streams, Arizona. J. N. Am. Benthol. Soc. 13: 151–159.

    Google Scholar 

  • Pinder L.C.V. 1978. A key to the adult males of the British Chironomidae (Diptera) the non-biting midges. Freshwater Biological Association Scientific Publication No 37.

  • Ringe F. 1974. Chironomiden-Emergenz 1970 in Breitenbach und Rohrwiesenbach. Arch. Hydrobiol. Suppl. 45: 212–304.

    Google Scholar 

  • Sæther O.A. 1977. Female genitalia in Chironomidae and other Nematocera: morphology, phylogenies, keys. Bulletin of the Fisheries Research Board of Canada 197: 1–209.

    Google Scholar 

  • Sæther O.A., Ashe P. and Murray D.A. 2000. Family Chironomidae.In: Papp L. and Darvas B. (eds), Manual of Palaearctic Diptera, Vol. 4: Appendix. Science Herald, Budapest, Hungary, pp. 113–334.

    Google Scholar 

  • Samietz R. 1996. Kommentiertes Verzeichnis der auf dem Gebiet der Bundesrepublik Deutschland nachgewiesenen Chironomiden-Arten (Insecta; Diptera). Abhandlungen und Berichte des Museums der Natur Gotha 19: 36–70.

    Google Scholar 

  • Samietz R. 1999. Chironomidae.. In: Schumann H., Bährmann R. and Stark A. (eds), Checkliste der Dipteren Deutschlands. Ampyx-Verlag, Halle (Saale), Germany, pp. 39–50.

    Google Scholar 

  • Smock L.A., Metzler G.M. and Gladden J.E. 1989. The role of debris dams in the structure and function of low-gradient, headwater streams. Ecology 70: 764–775.

    Google Scholar 

  • Sørensen T. 1948. A method of establishing groups of equal amplitude in a plant society based on similarity of species content and its application to analysis of the vegetation on Danish commons. Biologiske Skrifter 5: 1–34.

    Google Scholar 

  • Spänhoff B. 2002. Submerged wood in a sandy lowland stream: Habitat traits, spatio-temporal colonization patterns of xylobiont invertebrates, and epixylic biofilm development. Ph.D thesis. University of Muenster, Germany.

    Google Scholar 

  • Spänhoff B., Alecke C. and Meyer E.I. 1999. The colonization of aquatic woody debris by Trichoptera, with special reference to the genus Lype (Psychomyiidae). In: Malicky H. and Chantaramongkol P. (eds), Proceedings of the 9th International Symposium on Trichoptera 1998. Faculty of Science, Chiang Mai University, Chiang Mai, Thailand, pp. 349–358.

    Google Scholar 

  • Spänhoff B., Alecke C. and Meyer E.I. 2000. Colonization of submerged twigs and branches of different wood genera by aquatic macroinvertebrates. Int. Rev. Hydrobiol. 85: 49–66.

    Google Scholar 

  • Spänhoff B., Alecke C. and Meyer E.I. 2001. Simple method for rating the decay stages of submerged woody debris. J. N. Am. Benthol. Soc. 20: 385–394.

    Google Scholar 

  • Stagliano D.M., Benke A.C. and Anderson D.H. 1998. Emergence of aquatic insects from 2 habitats in a small wetland of the southeastern USA: temporal patterns of numbers and biomass. J. N. Am. Benthol. Soc. 17: 37–53.

    Google Scholar 

  • Triska F.J., and Cromack K. 1980. The role of wood debris in forests and streams. In: Waring R.H. (ed.), Forests: Fresh Perspectives from Ecosystem Analysis. Proceedings of the 40th Biology Colloquium. Oregon State University Press, Corvallis, Oregon, USA, pp. 171–190.

    Google Scholar 

  • Vannote R.L., Minshall G.W., Cummins K.W., Sedell J.R. and Cushing C.E. 1980. The river continuum concept. Can. J. Fish. Aquat. Sci. 37: 130–137.

    Google Scholar 

  • Wainstein B.A. 1967. Some methods of evaluation of similarity of biocoenoses. Zool. Zhurnal 46: 981–986.

    Google Scholar 

  • Ward A.F. and Williams D.D. 1986. Longitudinal zonation and food of larval chironomids (Insecta: Diptera) along the course of a river in temperate Canada. Holarctic Ecology 9: 48–57.

    Google Scholar 

  • Warmke S. and Hering D. 2000. Composition, microdistribution and food of the macroinvertebrate fauna inhabiting wood in low-order mountain streams in Central Europe. Int. Rev. Hydrobiol. 85: 67–78.

    Google Scholar 

  • Waters T.F. 1995. Sediments in Streams: Sources, Biological Effects, and Control. American Fisheries Society Monograph 7. AFS, Bethesda, Maryland, USA.

    Google Scholar 

  • Wiederholm T. 1989. Chironomidae of the Holarctic Region: Keys and Diagnoses: Part 3. Adult males. Entomol. Scand. Suppl. 34: 1–532.

    Google Scholar 

  • Wright A.B. and Smock L.A. 2001. Macroinvertebrate community structure and production in a low-gradient stream in an undisturbed watershed. Arch. Hydrobiol. 152: 297–313.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spänhoff, B., Kaschek, N. & Irmgard Meyer, E. Laboratory investigation on community composition, emergence patterns and biomass of wood-inhabiting Chironomidae (Diptera) from a sandy lowland stream in Central Europe (Germany). Aquatic Ecology 38, 547–560 (2004). https://doi.org/10.1007/s10452-004-4160-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-004-4160-5

Navigation