Skip to main content

Advertisement

Log in

Supercritical hydrogen adsorption in nanostructured solids with hydrogen density variation in pores

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Experimental excess isotherms for the adsorption of gases in porous solids may be represented by mathematical models that incorporate the total amount of gas within a pore, a quantity which cannot easily be found experimentally but which is important for calculations for many applications, including adsorptive storage. A model that is currently used for hydrogen adsorption in porous solids has been improved to include a more realistic density profile of the gas within the pore, and allows calculation of the total amount of adsorbent. A comparison has been made between different Type I isotherm equations embedded in the model, by examining the quality of the fits to hydrogen isotherms for six different nanoporous materials. A new Type I isotherm equation which has not previously been reported in the literature, the Unilan-b equation, has been derived and has also been included in this comparison study. These results indicate that while some Type I isotherm equations fit certain types of materials better than others, the Tόth equation produces the best overall quality of fit and also provides realistic parameter values when used to analyse hydrogen sorption data for a model carbon adsorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

MOF:

Metal–organic framework

PIM:

Polymer of intrinsic microporosity

m E :

Excess mass of hydrogen

v P :

Pore volume

ρB :

Bulk density

m maxA :

Limiting maximum uptake

θA :

Fractional filling

wt %:

Weight percent

P :

Absolute pressure

b :

Affinity parameter

Q :

Enthalpic factor

b 0 :

Pre-exponential factor

R :

Molar gas constant

T :

Absolute temperature

bdc:

Benzene-1,4-dicarboxylate

MIL:

Matériaux de l’Institut Lavoisier

BET:

Brunauer, Emmett and Teller

m B(A) :

Bulk hydrogen within the adsorbate

m A :

Absolute uptake

m P :

Total uptake

ρA :

Adsorbate density

v A :

Adsorbate volume

M :

Molar mass

Z :

Compressibility factor

NIST:

National Institute of Standards and Technology

b (T) :

Tόth affinity parameter

c (T) :

Tόth heterogeneity parameter

RMSR:

Root mean square residual

b 1 :

Minimum value of b in a uniform distribution

b 2 :

Maximum value of b in a uniform distribution

Q 1 :

Minimum value of Q in a uniform distribution

Q 2 :

Maximum value of Q in a uniform distribution

θ(P,h):

Local isotherm

h :

Heterogeneity parameter

w :

Substitution variable

b (L) :

Langmuir affinity parameter

b (S) :

Sips affinity parameter

m (S) :

Sips heterogeneity parameter

b (GF) :

Generalised Freundlich affinity parameter

q :

Generalised Freundlich heterogeneity parameter

b (JF) :

Jovanović–Freundlich affinity parameter

c (JF) :

Jovanović–Freundlich heterogeneity parameter

α:

Dubinin–Astakhov enthalpic factor

β:

Dubinin–Astakhov entropic factor

m (DA) :

Adjustable parameter within the Dubinin–Astakhov equation

P 0 :

Vapour pressure

GCMC:

Grand-canonical Monte Carlo

References

  • Arrhenius, S.: Uber die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Physik. Chem. 4, 226 (1889)

    Google Scholar 

  • Bekkum, H.V.: Introduction to Zeolite Science and Practice, vol. 137. Elsevier, Amsterdam (2001)

    Google Scholar 

  • Bimbo, N., Ting, V.P., Hruzewicz-Kolodziejczyk, A., Mays, T.J.: Analysis of hydrogen storage in nanoporous materials for low carbon energy applications. Faraday Discuss. 151, 59–74 (2011)

    Article  CAS  Google Scholar 

  • Boutin, A., Springuel-Huet, M.-A., Nossov, A., Gédéon, A., Loiseau, T., Volkringer, C., Férey, G., Coudert, F.-X., Fuchs, A.H.: Breathing transitions in MIL-53(Al) metal–organic framework upon xenon adsorption. Angew. Chem. Int. Edit. 48(44), 8314–8317 (2009)

    Article  CAS  Google Scholar 

  • British Standards Institution: Determination of the specific surface area of powders-part 1: BET method of gas adsorption for solids (including porous materials). In: [BS 4359-1, ISO 9277:1995]. British Standards Institution (1996)

  • Choi, B.-U., Choi, D.-K., Lee, Y.-W., Lee, B.-K., Kim, S.-H.: Adsorption equilibria of methane, ethane, ethylene, nitrogen, and hydrogen onto activated carbon. J. Chem. Eng. Data 48(3), 603–607 (2003)

    Article  CAS  Google Scholar 

  • Czerny, A.M., Bénard, P., Chahine, R.: Adsorption of nitrogen on granular activated carbon: experiment and modeling. Langmuir 21(7), 2871–2875 (2005)

    Article  CAS  Google Scholar 

  • Do, D.D.: Adsorption Analysis: Equilibria and Kinetics, vol. 2. Series on Chemical Engineering. Imperial College Press, London (1998)

    Book  Google Scholar 

  • Dubinin, M.M.: In: Cadenhead, D.A. (ed.) Progress in Surface and Membrane Science, vol. 9. Academic Press, New York (1975)

    Google Scholar 

  • Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., Margiolaki, I.: A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309(5743), 2040–2042 (2005)

    Article  Google Scholar 

  • Freundlich, H.: Colloid & Capillary Chemistry. Methuen & Co. Ltd., London (1926)

    Google Scholar 

  • Gil, A., Trujillano, R., Vicente, M.A., Korili, S.A.: Hydrogen adsorption by microporous materials based on alumina-pillared clays. Int. J. Hydrogen Energy 34(20), 8611–8615 (2009)

    Article  CAS  Google Scholar 

  • Honig, J.M., Reyerson, L.H.: Adsorption of nitrogen, oxygen and argon on rutile at low temperatures; applicability of the concept of surface heterogeneity. J. Phys. Chem. 56(1), 140–144 (1952)

    Article  CAS  Google Scholar 

  • Hruzewicz-Kołodziejczyk, A., Ting, V.P., Bimbo, N., Mays, T.J.: Improving comparability of hydrogen storage capacities of nanoporous materials. Int. J. Hydrogen Energy 37(3), 2728–2736 (2012)

    Article  Google Scholar 

  • International Energy Agency: World Energy Outlook 2010. In: OECD: Organisation for Economic Co-operation and Development. World Energy Outlook, Paris (2010)

  • Jagiello, J., Ansón, A., Martínez, M.T.: DFT-based prediction of high-pressure H2 adsorption on porous carbons at ambient temperatures from low-pressure adsorption data measured at 77 K. J. Phys. Chem. B 110(10), 4531–4534 (2006)

    Article  CAS  Google Scholar 

  • James, S.L.: Metal-organic frameworks. Chem. Soc. Rev. 32(5), 276–288 (2003)

    Article  CAS  Google Scholar 

  • Jaroniec, M., Madey, R.: Physical Adsorption on Heterogeneous Solids. Elsevier, Amsterdam (1988)

    Google Scholar 

  • Jiang, D., Burrows, A.D., Edler, K.J.: Size-controlled synthesis of MIL-101(Cr) nanoparticles with enhanced selectivity for CO2 over N2. Cryst. Eng. Commun. 13(23), 6916–6919 (2011)

    Article  CAS  Google Scholar 

  • Johansson, E., Hjörvarsson, B., Ekström, T., Jacob, M.: Hydrogen in carbon nanostructures. J. Alloy. Compd. 330–332, 670–675 (2002)

    Article  Google Scholar 

  • Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403 (1918)

    Article  CAS  Google Scholar 

  • Leachman, J.W., Jacobsen, R.T., Penoncello, S.G., Lemmon, E.W.: Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen. J. Phys. Chem. Ref. Data 38, 721–728 (2009)

    Google Scholar 

  • Lin, X., Jia, J., Zhao, X., Thomas, K.M., Blake, A.J., Walker, G.S., Champness, N.R., Hubberstey, P., Schröder, M.: High H2 adsorption by coordination-framework materials. Angew. Chem. Int. Edit. 45(44), 7358–7364 (2006)

    Article  CAS  Google Scholar 

  • Liu, Y., Her, J.-H., Dailly, A., Ramirez-Cuesta, A.J., Neumann, D.A., Brown, C.M.: Reversible structural transition in MIL-53 with large temperature hysteresis. J. Am. Chem. Soc. 130(35), 11813–11818 (2008)

    Article  CAS  Google Scholar 

  • Loiseau, T., Serre, C., Huguenard, C., Fink, G., Taulelle, F., Henry, M., Bataille, T., Férey, G.: A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J. 10(6), 1373–1382 (2004)

    Article  CAS  Google Scholar 

  • Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)

    Article  Google Scholar 

  • McKeown, N.B., Budd, P.M.: Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35(8), 675–683 (2006)

    Article  CAS  Google Scholar 

  • National Institute of Standards and Technology: NIST Chemistry WebBook. http://webbook.nist.gov/ (2011). Accessed 18/09/2012

  • Neimark, A.V., Coudert, F.O.-X., Triguero, C., Boutin, A., Fuchs, A.H., Beurroies, I., Denoyel, R.: Structural transitions in MIL-53 (Cr): view from outside and inside. Langmuir 27(8), 4734–4741 (2011)

    Article  CAS  Google Scholar 

  • Park, K.S., Ni, Z., Côté, A.P., Choi, J.Y., Huang, R., Uribe-Romo, F.J., Chae, H.K., O’Keeffe, M., Yaghi, O.M.: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. 103(27), 10186–10191 (2006)

    Article  CAS  Google Scholar 

  • Poirier, E., Dailly, A.: Thermodynamic study of the adsorbed hydrogen phase in Cu-based metal-organic frameworks at cryogenic temperatures. Energy Environ. Sci. 2(4), 420–425 (2009)

    Article  CAS  Google Scholar 

  • Poirier, E., Chahine, R., Bénard, P., Lafi, L., Dorval-Douville, G., Chandonia, P.A.: Hydrogen adsorption measurements and modeling on metal-organic frameworks and single-walled carbon nanotubes. Langmuir 22(21), 8784–8789 (2006)

    Article  CAS  Google Scholar 

  • Purewal, J., Liu, D., Sudik, A., Veenstra, M., Yang, J., Maurer, S., Müller, U., Siegel, D.J.: Improved hydrogen storage and thermal conductivity in high-density MOF-5 composites. J. Phys. Chem. C 116(38), 20199–20212 (2012)

    Article  CAS  Google Scholar 

  • Quiñones, I., Guiochon, G.: Derivation and application of a Jovanovic–Freundlich isotherm model for single-component adsorption on heterogeneous surfaces. J. Colloid Interface Sci. 183(1), 57–67 (1996)

    Article  Google Scholar 

  • Richard, M.A., Bénard, P., Chahine, R.: Gas adsorption process in activated carbon over a wide temperature range above the critical point. Part 1: modified Dubinin–Astakhov model. Adsorption 15(1), 43–51 (2009)

    Article  CAS  Google Scholar 

  • Rouquerol, J., Rouquerol, F., Sing, K.S.W.: Absorption by Powders and Porous Solids. Elsevier, Amsterdam (1998)

    Google Scholar 

  • Rudzinski, W., Everett, D.H.: Adsorption of Gases on Heterogeneous Surfaces. Academic Press, London (1992)

    Google Scholar 

  • Schlichtenmayer, M., Hirscher, M.: Nanosponges for hydrogen storage. J. Mater. Chem. 22(20), 10134–10143 (2012)

    Article  CAS  Google Scholar 

  • Serre, C., Bourrelly, S., Vimont, A., Ramsahye, N.A., Maurin, G., Llewellyn, P.L., Daturi, M., Filinchuk, Y., Leynaud, O., Barnes, P., Férey, G.: An explanation for the very large breathing effect of a metal–organic framework during CO2 adsorption. Adv. Mater. 19(17), 2246–2251 (2007)

    Article  CAS  Google Scholar 

  • Silvera, I.F.: The solid molecular hydrogens in the condensed phase: Fundamentals and static properties. Rev. Mod. Phys. 52(2), 393–452 (1980)

    Google Scholar 

  • Sips, R.: On the structure of a catalyst surface. II. J. Chem. Phys. 18(8), 1024–1026 (1950)

    Google Scholar 

  • Sips, R.: On the structure of a catalyst surface. J. Chem. Phys. 16, 490–495 (1948)

    Google Scholar 

  • Ströbel, R., Garche, J., Moseley, P.T., Jörissen, L., Wolf, G.: Hydrogen storage by carbon materials. J. Power Sources 159(2), 781–801 (2006)

    Article  Google Scholar 

  • Tóth, J.: State equations of the solid-gas interface layers. Acta Chim. Hung. 69, 311 (1971)

    Google Scholar 

  • U.S. Department of Energy: In: Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles, vol. 2012 (2009)

  • Wang, Q., Johnson, J.K.: Computer simulations of hydrogen adsorption on graphite nanofibers. J. Phys. Chem. B 103(2), 277–281 (1998)

    Article  Google Scholar 

  • Wilson, M.C., Galwey, A.K.: Compensation effect in heterogeneous catalytic reactions including hydrocarbon formation on clays. Nature 243(5407), 402–404 (1973)

    Article  CAS  Google Scholar 

  • Zhou, L., Yao, J., Wang, Y., Zhou, Y.: Estimation of pore size distribution by CO2 adsorption and its application in physical activation of precursors. Chin. J. Chem. Eng. 8(3), 279–282 (2000)

    Google Scholar 

  • Zhou, W., Wu, H., Hartman, M.R., Yildirim, T.: Hydrogen and methane adsorption in metal–organic frameworks: a high-pressure volumetric study. J. Phys. Chem. C 111(44), 16131–16137 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

JES thanks the UK Engineering and Physical Sciences Research Council (EPSRC) Doctoral Training Centre in Sustainable Chemical Technologies at the University of Bath, and also to Dr Agata Godula-Jopek from the EADS Innovation Works, Munich, Germany for financial support. NB and TJM thank the EPSRC for funding via the SUPERGEN United Kingdom Sustainable Hydrogen Energy Consortium (UK-SHEC, EP/J016454/1), VPT thanks the University of Bath for funding via an EPSRC Development Fund grant and a Prize Research Fellowship, and VPT and TJM thank the EPSRC for supporting the latter stages of this work via its Delivery Fund at the University of Bath and the SUPERGEN Hydrogen and Fuel Cells Hub (EP/E040071/1). JES, NB and VPT thank the Organising Committee of the 8th International Symposium of the Effects of Surface Heterogeneity in Adsorption and Catalysis on Solids (ISSHAC-8, Aug 2012, Kraków, Poland) for the opportunity to present this work as an oral presentation and for subsidising registration for the conference. The authors thank Anne Dailly (Chemical Sciences and Materials Systems Laboratory, General Motors Global Research and Development, Warren, MI, U.S) for providing the NOTT-101 data. ADB and DJ thank the EPSRC for funding (EP/H046305/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Mays.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2720 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharpe, J.E., Bimbo, N., Ting, V.P. et al. Supercritical hydrogen adsorption in nanostructured solids with hydrogen density variation in pores. Adsorption 19, 643–652 (2013). https://doi.org/10.1007/s10450-013-9487-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9487-6

Keywords

Navigation