Skip to main content
Log in

Reactive adsorption of penicillin on activated carbons

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

A series of activated carbons with varied surface chemistry, obtained by wet oxidation and thermal treatment, was used for the removal of penicillin from low concentration aqueous solution. It was found that the carbon surface chemistry favors the degradation of the antibiotic, giving rise to various intermediates detected both in solution and in the adsorbed phase (deposited with the pore structure of the activated carbons). The confinement of penicillin molecules entrapped in the nanopores of activated carbons of acidic nature accelerates their degradation compared to that one in the bulk solution, which can be linked the strong local pH fall inside the pores. Degradation also takes place in activated carbons of basic pH, although the nature and partition of the intermediates formed differ from those in the acidic carbons. In both cases most of the breakdown products do not present therapeutic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aksu, Z., Tunc, O.: Application of biosorption for penicillin G removal: comparison with activated carbon. Process Biochem. 40, 831–847 (2005)

    Article  CAS  Google Scholar 

  • Al-Ahmad, A., Daschner, R.D., Kummerer, K.: Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria. Arch. Environ. Contam. Toxicol. 37, 158–163 (1999)

    Article  CAS  Google Scholar 

  • Ania, C.O., Menendez, J.A., Parra, J.B., Pis, J.J.: Microwave-assisted regeneration of activated carbons loaded with pharmaceuticals. Water Res. 41, 3299–3306 (2007a)

    Article  CAS  Google Scholar 

  • Ania, C.O., Parra, J.B., Arenillas, A., Rubiera, F., Bandosz, T.J., Pis, J.J.: On the mechanism of reactive adsorption of dibenzothiophene on organic waste derived carbons. Appl. Surf. Sci. 253, 5899–5903 (2007b)

    Article  CAS  Google Scholar 

  • Arnott, I.A., Weatherley, L.R.: The stability of penicillin G during recovery by electrically enhanced extraction. Process Biochem. 30, 447–455 (1995)

    CAS  Google Scholar 

  • Deshpande, A.D., Baheti, K.G., Chatterjee, N.R.: Degradation of β-lactam antibiotics. Curr. Sci. 87, 1684–1695 (2004)

    CAS  Google Scholar 

  • Bandosz, T.J., Ania, C.O.: Surface chemistry of activated carbons and its characterization. In: Bandosz, T.J. (ed.) Activated Carbon Surfaces in Environmental Remediation. Interface Science and Technology, vol. 7, pp. 159–229. Elsevier, New York (2006)

    Chapter  Google Scholar 

  • Chaubal, M.V., Payne, G.F., Reynolds, C.H., Albright, R.L.: Equilibria for the adsorption of antibiotics onto neutral polymeric sorbents: experimental and modeling studies. Biotechnol. Bioeng. 47, 215–226 (2004)

    Article  Google Scholar 

  • Choi, K.J., Kim, S.G., Kim, S.H.: Removal of antibiotics by coagulation and granular activated carbon filtration. J. Hazard. Mater. 15, 38–43 (2008)

    Article  Google Scholar 

  • Daughton, C.G., Ternes, T.A.: Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ. Health Perspect. 107, 907–938 (1999)

    Article  CAS  Google Scholar 

  • De Weck, A.L., Eisen, H.N.: Some immunochemical properties of penicillenic acid: an antigenic determinant derived from penicillin. J. Exp. Med. 112, 1228–1247 (1960)

    Google Scholar 

  • Figueiredo, J.L., Pereira, M.F.R., Freitas, M.M.A., Orfao, J.J.M.: Modification of the surface chemistry of activated carbons. Carbon 37, 1379–1389 (1999)

    Article  CAS  Google Scholar 

  • Gomez, M.J., Martinez-Bueno, M.J., Lacorte, S., Fernandez-Alba, A.R., Aguera, A.: Pilot survey monitoring pharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast. Chemosphere 66, 993–1002 (2007)

    Article  CAS  Google Scholar 

  • Gower, J.L., Risbridger, G.D., Redrup, M.J.: Positive and negative ion fast atom bombardment mass spectra of some penicilloic acids. J. Antibiot. 35, 33–43 (1983)

    Google Scholar 

  • Graeser, M., Pippel, E., Greiner, A., Wendorff, J.H.: Polymer core-shell fibers with metal nanoparticles as nanoreactor for catalysis. Macromolecules 40, 6032–6039 (2007)

    Article  CAS  Google Scholar 

  • Hernando, M.D., Mezcua, M., Fernandez-Alba, A.R., Barceló, D.: Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69, 334–342 (2006)

    Article  CAS  Google Scholar 

  • Jones, O.A., Lester, J.N., Voulvoulis, N.: Pharmaceuticals: a threat to drinking water? Trends Biotechnol. 23, 163–167 (2005)

    Article  CAS  Google Scholar 

  • Kolpin, D.W., Furlong, E.T., Meyer, M., Thurman, E.M., Zaugg, S.D., Barber, L.B., Buxton, H.A.T.: Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environ. Sci. Technol. 36, 1202–1211 (2002)

    Article  CAS  Google Scholar 

  • Li, D., Yang, M., Ju, J., Zhang, Y., Chang, H., Jin, F.: Determination of penicillin G and its degradation products in a penicillin products wastewater treatment plant and the receiving river. Water Res. 42, 307–337 (2008)

    Article  CAS  Google Scholar 

  • Mestre, A.S., Pires, J., Nogueira, J.M.F., Parra, J.B., Carvalho, A.P., Ania, C.O.: Waste-derived activated carbons for removal of ibuprofen from solution: role of surface chemistry and pore structure. Bioresour. Technol. 100, 1720–1726 (2009)

    Article  CAS  Google Scholar 

  • Ruiz, B., Cabrita, I., Mestre, A.S., Parra, J.B., Pires, J., Carvalho, A.P., Ania, C.O.: Surface heterogeneity effects of activated carbons on the kinetics of paracetamol removal from aqueous solution. Appl. Surf. Sci. 256, 171–5176 (2010)

    Article  Google Scholar 

  • Moats, W.A., Romanowski, R.D.: Determination of penicillin G in beef and pork tissues using an automated LC cleanup. J. Agric. Food Chem. 46, 1410–1413 (1998)

    Article  CAS  Google Scholar 

  • Noh, J.S., Schwarz, J.A.: Estimation of the point of zero charge of simple oxides by mass titration. J. Colloid Interface Sci. 130, 157–164 (1989)

    Article  CAS  Google Scholar 

  • Robberson, K.A., Waghe, A.B., Sabatini, D.A., Butler, E.C.: Adsorption of the quinolone antibiotic nalidixic acid onto anion-exchange and neutral polymers. Chemosphere 63, 934–941 (2006)

    Article  CAS  Google Scholar 

  • Schwartz, M.A.: Mechanism of degradation of penicillin G in acidic solution. J Pharm. Sci. 54, 472–473 (1965)

    Article  CAS  Google Scholar 

  • Zhou, L., Wang, S., Dai, W., Zhou, Y.: Intensified reaction of dilute thiophenes in nanoreactor. J. Phys. Chem. A 112, 1887–1890 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conchi O. Ania.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ania, C.O., Pelayo, J.G. & Bandosz, T.J. Reactive adsorption of penicillin on activated carbons. Adsorption 17, 421–429 (2011). https://doi.org/10.1007/s10450-010-9271-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-010-9271-9

Keywords

Navigation