Skip to main content
Log in

Fundamental Form and the Cartan Tensor of (2,5)-Distributions Coincide

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract.

In our previous paper, for a generic rank-2 vector distributions on an n-dimensional manifold (n ≥ 5) we constructed a special differential invariant, the fundamental form. In the case n = 5, this differential invariant has the same algebraic nature, as the covariant binary biquadratic form, constructed by E. Cartan, using his “reduction-prolongation” procedure (we call this form the Cartan tensor). In the present paper, we prove that our fundamental form coincides (up to the constant factor −35) with the Cartan tensor. This result explains geometrically the reason for the existence of the Cartan tensor (originally, this tensor was obtained by very sophisticated algebraic manipulations) and gives the true analogs of this tensor in the Riemannian geometry. In addition, as a part of the proof, we obtain a new useful formula for the Cartan tensor in terms of the structural functions of any frame naturally adapted to the distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. A. A. Agrachev and R. V. Gamkrelidze, Feedback-invariant optimal control theory, I. Regular extremals. J. Dynam. Control Systems 3 (1997), No. 3, 343–389.

    Article  MATH  MathSciNet  Google Scholar 

  2. 2. A. A. Agrachev, Feedback-invariant optimal control theory, II. Jacobi curves for singular extremals. J. Dynam. Control Systems 4 (1998), No. 4, 583–604.

    Article  MATH  MathSciNet  Google Scholar 

  3. 3. A. Agrachev and I. Zelenko, Geometry of Jacobi curves, I. J. Dynam. Control Systems 8 (2002), No. 1, 93–140.

    Article  MATH  MathSciNet  Google Scholar 

  4. 4. A. Agrachev and I. Zelenko, Geometry of Jacobi curves, II. J. Dynam. Control Systems 8 (2002), No. 2, 167–215.

    Article  MATH  MathSciNet  Google Scholar 

  5. 5. R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, and P. A. Griffiths, Exterior differential systems. Math. Sci. Res. Inst. Publ. 18, Springer-Verlag, New York (1991).

    MATH  Google Scholar 

  6. 6. R. Bryant and L. Hsu, Rigidity of integral curves of rank 2 distribution. Invent. Math. 114 (1993), 435–461.

    Article  MATH  MathSciNet  Google Scholar 

  7. 7. E. Cartan, Les systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du second ordre. Ann. Sci. Ecole Norm. Sup. 27 (1910), No. 3, 109–192; reprinted in Œuvres completes, Partie II, vol. 2, Paris, Gautier-Villars (1953), pp. 927–1010.

    MATH  MathSciNet  Google Scholar 

  8. 8. L. Eisenhart, Riemannian geometry. Princeton Univ. Press (1949).

    Google Scholar 

  9. 9. R. Gardner, The methods of equivalence and its application. CBMS-NSF Region. Conf. Ser. Appl. Math. 58.

    Google Scholar 

  10. 10. R. Montgomery, A tour of sub-Riemannian geometries, their geodesics and applications. Math. Surveys Monogr. 91 (2002).

    MATH  Google Scholar 

  11. 11. S. Sternberg, Lectures on differential geometry. Prentice Hall, Inc. Englewood Cliffs, N.J. (1964).

    MATH  Google Scholar 

  12. 12. N. Tanaka, On the equivalence problems associated with simple graded Lie algebras. Hokkaido Math. J. 6 (1979), 23–84.

    Google Scholar 

  13. 13. I. Zelenko, Nonregular abnormal extremals of 2-distribution: existence, second variation, and rigidity. J. Dynam. Control Systems 5 (1999), No. 3, 347–383.

    Article  MATH  MathSciNet  Google Scholar 

  14. 14. I. Zelenko, On variational approach to differential invariants of rank two vector distributions. Differential Geom. Appl. (to appear); arxiv math.DG/0402171.

    MathSciNet  Google Scholar 

  15. 15. M. Zhitomirskii, Typical singularities of differential 1-forms and Pfaffian equations. Transl. Math. Monogr. 113, Amer. Math. Soc., Providence (1992).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Zelenko.

Additional information

2000 Mathematics Subject Classification. 58A30, 53A55.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zelenko, I. Fundamental Form and the Cartan Tensor of (2,5)-Distributions Coincide. J Dyn Control Syst 12, 247–276 (2006). https://doi.org/10.1007/s10450-006-0383-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-006-0383-1

Key words and phrases.

Navigation