Skip to main content

Advertisement

Log in

Mathematical Analysis of a Chlamydia Epidemic Model with Pulse Vaccination Strategy

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

In this paper, we have considered a dynamical model of Chlamydia disease with varying total population size, bilinear incidence rate and pulse vaccination strategy. We have defined two positive numbers \(R_{0}\) and \(R_{1}(\le R_{0})\). It is proved that there exists an infection-free periodic solution which is globally attractive if \(R_{0}<1\) and the disease is permanent if \(R_{1}>1.\) The important mathematical findings for the dynamical behaviour of the Chlamydia disease model are also numerically verified using MATLAB. Finally epidemiological implications of our analytical findings are addressed critically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adetunde IA, Koduah M, Amporful JK, DwummohSarpong A, Nyarko PK, Ennin CC, Appiah ST, Oladejo N (2009) Epidemiology of Chlamydia bacteria infections—a review. J Am Sci 5(4):55–64

    Google Scholar 

  • Agur Z, Cojocaru L, Mazor G, Anderson RM, Danon YL (1993) Pulse mass measles vaccination across age cohorts. Proc Natl Acad Sci USA 90:11698–11702

    Article  Google Scholar 

  • Anderson RM, May RM (1979) Population biology of infectious diseases. Part I. Nature 180:361–367

    Article  Google Scholar 

  • Anderson RM, May RM (1992) Infectious disease of humans, dynamical and control. Oxford University Press, Oxford

    Google Scholar 

  • Averting HIV and AIDS (2010) STD statistics worldwide. http://www.avert.org/stdstatisticsworldwide.htm. Accessed 08 Apr 2010

  • Babiuk LA, Babiuk SL, Baca-Estrada ME (2002) Novel vaccine strategies. Adv Virus Res 58:29–80

    Article  Google Scholar 

  • Bainov DD, Simeonov PS (1993) Impulsive differential equations: periodic solutions and applications. Longman Scientific and Technical, New York

    Google Scholar 

  • Bainov DD, Simeonov PS (1995) The stability theory of impulsive differential equations: asymptotic properties of the solutions. World Scientific, Singapore

    Google Scholar 

  • Brauer F, Castillo-Chavez C (2001) Mathematical models in population biology and epidemiology. Springer, Berlin

    Book  Google Scholar 

  • Cai L, Li X, Ghosh M, Guo B (2009) Stability of an HIV/AIDS epidemic model with treatment. J Comput Appl Math 229:313–323

    Article  Google Scholar 

  • Capasso V (1993) Mathematical structures of epidemic systems, lectures notes in biomathematics, vol 97. Springer, Berlin

    Book  Google Scholar 

  • Centers for Disease Control and Prevention (2008a) Sexually transmitted diseases (Chlamydia fact sheet). http://www.cdc.gov/std/Chlamydia/STDFact-Chlamydia.htm. Accessed 1 Apr 2008

  • Centers for Disease Control and Prevention (2008b) Trends in reportable sexually transmitted diseases in the United States. http://www.cdc.gov/std/stats04/trends2004.htm. Accessed 1 Apr 2008

  • Cooke KL, van Den Driessche P (1996) Analysis of an SEIRS epidemic model with two delays. J Math Biol 35:240–260

    Article  Google Scholar 

  • Diekmann O, Heesterbeek JAP (2000) Mathematical epidemiology of infectious diseases: model building analysis, and interpretation. Wiley, Chichester

    Google Scholar 

  • d’Onofrio A (2002a) Pulse vaccination strategy in the SIR epidemic model: global asymptotic stable eradication in presence of vaccine failures. Math Comput Model 36:473–489

    Article  Google Scholar 

  • d’Onofrio A (2002b) Stability properties of vaccination strategy in SEIR epidemic model. Math Biosci 179:57–72

    Article  Google Scholar 

  • d’Onofrio A (2005) Vaccination policies and nonlinear force of infection. Appl Math Comput 168:613–622

    Article  Google Scholar 

  • Fenton KA, Lowndes CM (2004) Recent trends in the epidemiology of sexually transmitted infections in the European Union. Sex Transm Infect 80:255–263

    Article  Google Scholar 

  • Fleming DT, Wasserheit JN (1999) From epidemiological synergy to public health policy and practice: the contribution of other sexually transmitted diseases to sexual transmission of HIV infection. Sex Transm Infect 75(4):3–17

    Article  Google Scholar 

  • Gakkhar S, Negi K (2008) Pulse vaccination in SIRS epidemic model with non-monotonic incidence rate. Chaos Solitons Fract 35:626–638

    Article  Google Scholar 

  • Gao S, Chen L, Nieto JJ, Torres A (2006) Analysis of a delayed epidemic model with pulse vaccination and saturation incidence. Vaccine 24:6037–6045

    Article  Google Scholar 

  • Gao S, Chen L, Teng Z (2007) Impulsive vaccination of an SEIRS model with time delay and varying total population size. Bull Math Biol 69:731–745

    Article  Google Scholar 

  • Gjorrgjieva J, Smith K, Chowell G, Sanchez F, Synder J, Castillo-Chavez C (2005) The role of vaccination in the control of SARS. Math Biosci Eng 2:1–17

    Google Scholar 

  • Hethcote HW, van Den Driessche P (1991) Some epidemiological models with nonlinear incidence. J Math Biol 29:271–287

    Article  Google Scholar 

  • Hillis SD, Wasserheit JN (1996) Screening for Chlamydia—a key to the prevention of pelvic inflammatory disease. New Engl J Med 334(21):1399–1401

    Article  Google Scholar 

  • Hui J, Chen L (2004) Impulsive vaccination of SIR epidemic models with nonlinear incidence rates. Discret Contin Dyn Syst Ser B 4:595–605

    Article  Google Scholar 

  • Kahn RH, Mousure DJ, Chatlotte SB, Kent K, Chow JM, Boudov MR, Brock J, Tulloch S (2005) Chlamydia trachomatis and Neisseria gonorrhoeae prevalence and coinfection in adolescents entering selected US Juvenile Detention Centers, 1997–2002. Sex Transm Dis 32(4):255–259

    Article  Google Scholar 

  • Kermack WO, Mckendrick AG (1927) Contributions to the mathematical theory of epidemics. Part I Proc R Soc A 115(5):700–721

    Article  Google Scholar 

  • Lakshmikantham V, Bainov DD, Simeonov PS (1989) Theory of impulsive differential equations. World Scientific, Singapore

    Book  Google Scholar 

  • Ma W, Song M, Takeuchi Y (2004) Global stability of an SIR epidemic model with time delay. Appl Math Lett 17:1141–1145

    Article  Google Scholar 

  • Manavi KA (2006) Review on infection with Chlamydia trachomatis. Best Pract Res Clin Obstet Gynaecol 20:941–951

    Article  Google Scholar 

  • Mena-Lorca J, Hethcote HW (1992) Dynamic models of infectious disease as regulators of population sizes. J Math Biol 30:693–716

    Google Scholar 

  • Meng X, Chen L, Cheng H (2007) Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination. Appl Math Comput 186:516–529

    Article  Google Scholar 

  • Miller WC, Ford CA, Morris M, Handcock MS, Schmitz JL, Hobbs MM, Cohen MS, Harris KM, Udry JR (2004) Prevalence of Chlamydial and gonococcal infections among young adults in the United States. JAMA 291:2229–2236

    Article  Google Scholar 

  • Mushayabasa S (2012) The epidemiological consequences of Chlamydia and gonorrhea co-infection: insights from a mathematical model. Int J Appl Math Comput 4(3):295–306

    Google Scholar 

  • Naresh R, Tripathi A, Omar S (2006) Modelling of the spread of AIDS epidemic with vertical transmission. Appl Math Comput 178:262–272

    Article  Google Scholar 

  • Nokes DJ, Swinton J (1995) The control of childhood viral infections by pulse vaccination. IMA J Math Appl Med Biol 12:29–53

    Article  Google Scholar 

  • Regan DG, Wilson DP, Hocking JS (2008) Coverage is the key for e.ective screening of Chlamydia trachomatis in Australia. J Infect Dis 198:349–358

    Article  Google Scholar 

  • Ruan S, Wang W (2003) Dynamical behavior of an epidemic model with nonlinear incidence rate. J Differ Equ 188:135–163

    Article  Google Scholar 

  • Schillinger JA, Dunne EF, Chapin JB, Ellen JM, Gaydos CA, Willard NJ, Kent CK, Marrazzo JM, Klausner JD, Rietmeijer CA, Markowitz LE (2005) Prevalence of Chlamydia trachomatis infection among men screened in 4 U.S. cities. Sex Transm Dis 32:74–77

    Article  Google Scholar 

  • Sharomi O, Gumel AB (2009) Re-infection-induced backward bifurcation in the transmission dynamics of Chlamydia trachomatis. J Math Anal Appl 356(1):96–118

    Article  Google Scholar 

  • Stone L, Shulgin B, Agur Z (2000) Theoretical examination of the pulse vaccination policy in the SIR epidemic models. Math Comput Model 31:207–215

    Article  Google Scholar 

  • Takeuchi Y, Cui J, Rinko M, Saito Y (2006a) Permanence of delayed population model with dispersal loss. Math Biosci 201:143–156

    Article  Google Scholar 

  • Takeuchi Y, Cui J, Rinko M, Saito Y (2006b) Permanence of dispersal population model with time delays. J Comp Appl Math 192:417–430

    Article  Google Scholar 

  • Tang S, Xiao Y, Clancy D (2005) New modelling approach concerning integrated disease control and cost-effectivity. Nonlinear Anal 63:439–471

    Article  Google Scholar 

  • Thieme HR (2003) Mathematics in population biology. Princeton University Press, Princeton

    Google Scholar 

  • Wang W (2002) Global behavior of an SEIRS epidemic model with time delays. Appl Math Lett 15:423–428

    Article  Google Scholar 

  • Wei C, Chen L (2008) A delayed epidemic model with pulse vaccination. Discret Dyn Nat Soc Article ID 746951, 12 pp. doi:10.1155/2008/746951

  • World Health Organization (2001) Global prevalence and incidence of selected curable sexually transmitted infections overview and estimates. http://www.who.int/docstore/hiv/GRSTI/index.htm. Accessed 08 Apr 2010

  • World Health Organization (2008) The world health report: changing history. http://www.who.int/entity/whr/2004/en/report04_en.pdf. Accessed 1 Apr 2008

  • World Health Organization (2010) Initiative for vaccine research (IVR): Chlamydia trachomatis. http://www.who.int/vaccine_research/diseases/soa_std/en/index1.html. Accessed 5 March 2010

  • Zhang T, Teng Z (2008) An SIRVS epidemic model with pulse vaccination strategy. J Theor Biol 250:375–381

    Article  Google Scholar 

  • Zhou Y, Liu H (2003) Stability of periodic solutions for an SIS model with pulse vaccination. Math Comput Model 38:299–308

    Article  Google Scholar 

Download references

Acknowledgments

The author is grateful to the anonymous referees and the Editor-in-Chief (Dr. Diedel Kornet, Ph.D.) for their careful reading, valuable comments and helpful suggestions, which have helped him to improve the presentation of this work significantly. He likes to thank TWAS, UNESCO and National Autonomous University of Mexico (UNAM) for financial support. He is grateful to Prof. Javier Bracho Carpizo, Prof. Marcelo Aguilar and Prof. Ricardo Gomez Aiza, Institute of Mathematics, National Autonomous University of Mexico for their helps and encouragements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Samanta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, G.P. Mathematical Analysis of a Chlamydia Epidemic Model with Pulse Vaccination Strategy. Acta Biotheor 63, 1–21 (2015). https://doi.org/10.1007/s10441-014-9234-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-014-9234-8

Keywords

Navigation