Skip to main content

Advertisement

Log in

Pro-Atherogenic Shear Stress and HIV Proteins Synergistically Upregulate Cathepsin K in Endothelial Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Major advances in highly active antiretroviral therapies (HAART) have extended the lives of people living with HIV, but there still remains an increased risk of death by cardiovascular diseases (CVD). HIV proteins have been shown to contribute to cardiovascular dysfunction with effects on the different cell types that comprise the arterial wall. In particular, HIV-1 transactivating factor (Tat) has been shown to bind to endothelial cells inducing a range of responses that contribute to vascular dysfunction. It is well established that hemodynamics also play an important role in endothelial cell mediated atherosclerotic development. When exposed to low or oscillatory shear stress, such as that found at branches and bifurcations, endothelial cells contribute to proteolytic vascular remodeling by upregulating cathepsins, potent elastases and collagenases that contribute to altered biomechanics and plaque formation. Mechanisms to understand the influence of Tat on shear stress mediated vascular remodeling have not been fully elucidated. Using an in vivo HIV-Tg mouse model and an in vitro cone and plate shear stress bioreactor to actuate physiologically relevant pro-atherogenic or atheroprotective shear stress on human aortic endothelial cells, we have shown synergism between HIV proteins and pro-atherogenic shear stress to increase endothelial cell expression of the powerful protease cathepsin K, and may implicate this protease in accelerated CVD in people living with HIV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Antonov, A. S., et al. Prothrombotic phenotype diversity of human aortic endothelial cells in culture. Thromb. Res. 67(2):135–145, 1992.

    Article  CAS  PubMed  Google Scholar 

  2. Bonnet, D., et al. Arterial stiffness and endothelial dysfunction in HIV-infected children. AIDS 18(7):1037–1041, 2004.

    Article  PubMed  Google Scholar 

  3. Bromme, D., et al. Human cathepsin V functional expression, tissue distribution, electrostatic surface potential, enzymatic characterization, and chromosomal localization. Biochemistry 38(8):2377–2385, 1999.

    Article  CAS  PubMed  Google Scholar 

  4. Chiodelli, P., et al. Sialic acid associated with alphavbeta3 integrin mediates HIV-1 Tat protein interaction and endothelial cell proangiogenic activation. J. Biol. Chem. 287(24):20456–20466, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Chironi, G., et al. Brief report: carotid intima-media thickness in heavily pretreated HIV-infected patients. J. Acquir. Immune Defic. Syndr. 32(5):490–493, 2003.

    Article  PubMed  Google Scholar 

  6. Cota-Gomez, A., et al. The human immunodeficiency virus-1 Tat protein activates human umbilical vein endothelial cell E-selectin expression via an NF-kappa B-dependent mechanism. J. Biol. Chem. 277(17):14390–14399, 2002.

    CAS  PubMed  Google Scholar 

  7. Currier, J. S., et al. Carotid artery intima-media thickness and HIV infection: traditional risk factors overshadow impact of protease inhibitor exposure. AIDS 19(9):927–933, 2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Dai, G., et al. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc. Natl Acad. Sci. U.S.A. 101(41):14871–14876, 2004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. El-Sadr, W. M., et al. CD4+ count-guided interruption of antiretroviral treatment. N. Engl. J. Med. 355(22):2283–2296, 2006.

    Article  PubMed  Google Scholar 

  10. Ensoli, B., et al. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J. Virol. 67(1):277–287, 1993.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Galis, Z. S., et al. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J. Clin. Investig. 94(6):2493–2503, 1994.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hansen, L., et al. Azidothymidine (AZT) leads to arterial stiffening and intima-media thickening in mice. J. Biomech. 46(9):1540–1547, 2013.

    Article  PubMed  Google Scholar 

  13. Hansen, L., et al. Endothelial dysfunction, arterial stiffening, and intima-media thickening in large arteries from HIV-1 transgenic mice. Ann. Biomed. Eng. 41(4):682–693, 2013.

    Article  PubMed  Google Scholar 

  14. Hofman, F. M., et al. Exogenous tat protein activates human endothelial cells. Blood 82(9):2774–2780, 1993.

    CAS  PubMed  Google Scholar 

  15. Hsue, P. Y., et al. Role of viral replication, antiretroviral therapy, and immunodeficiency in HIV-associated atherosclerosis. AIDS 23(9):1059–1067, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kline, E. R., and R. L. Sutliff. The roles of HIV-1 proteins and antiretroviral drug therapy in HIV-1-associated endothelial dysfunction. J. Investig. Med. 56(5):752–769, 2008.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Kopp, J. B., et al. Progressive glomerulosclerosis and enhanced renal accumulation of basement-membrane components in mice transgenic for human-immunodeficiency-virus type-1 genes. Proc. Natl Acad. Sci. U.S.A. 89(5):1577–1581, 1992.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ku, D. N. Blood flow in arteries. Annu. Rev. Fluid Mech. 29:399–434, 1997.

    Article  Google Scholar 

  19. Li, W. A., et al. Detection of femtomole quantities of mature cathepsin K with zymography. Anal. Biochem. 401(1):91–98, 2010.

    Article  CAS  PubMed  Google Scholar 

  20. Liu, K., et al. HIV-1 Tat protein-induced VCAM-1 expression in human pulmonary artery endothelial cells and its signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 289(2):L252–L260, 2005.

    Article  CAS  PubMed  Google Scholar 

  21. Liu, J., et al. Increased serum cathepsin S in patients with atherosclerosis and diabetes. Atherosclerosis 186(2):411–419, 2006.

    Article  CAS  PubMed  Google Scholar 

  22. Liu, J., et al. Cathepsin L expression and regulation in human abdominal aortic aneurysm, atherosclerosis, and vascular cells. Atherosclerosis 184(2):302–311, 2006.

    Article  CAS  PubMed  Google Scholar 

  23. Lutgens, E., et al. Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation. Circulation 113(1):98–107, 2006.

    CAS  PubMed  Google Scholar 

  24. McComsey, G. A., et al. Increased carotid intima media thickness and cardiac biomarkers in HIV infected children. AIDS 21(8):921–927, 2007.

    Article  PubMed  Google Scholar 

  25. Meng, Q., et al. Coronary artery calcification, atherogenic lipid changes, and increased erythrocyte volume in black injection drug users infected with human immunodeficiency virus-1 treated with protease inhibitors. Am. Heart J. 144(4):642–648, 2002.

    Article  PubMed  Google Scholar 

  26. Moore, Jr, J. E., et al. Pulsatile flow visualization in the abdominal aorta under differing physiologic conditions: implications for increased susceptibility to atherosclerosis. J. Biomech. Eng. 114(3):391–397, 1992.

    Article  PubMed  Google Scholar 

  27. Moore, Jr, J. E., et al. Hemodynamics in the abdominal aorta: a comparison of in vitro and in vivo measurements. J. Appl Physiol. 76(4):1520–1527, 1994.

    PubMed  Google Scholar 

  28. Platt, M. O., R. F. Ankeny, and H. Jo. Laminar shear stress inhibits cathepsin L activity in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 26(8):1784–1790, 2006.

    Article  CAS  PubMed  Google Scholar 

  29. Platt, M. O., R. F. Ankeny, and H. Jo. Laminar shear stress inhibits cathepsin L activity in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 26(8):1784–1790, 2006.

    Article  CAS  PubMed  Google Scholar 

  30. Platt, M. O., et al. Expression of cathepsin K is regulated by shear stress in cultured endothelial cells and is increased in endothelium in human atherosclerosis. Am. J. Physiol. Heart Circ. Physiol. 292(3):H1479–H1486, 2007.

    Article  CAS  PubMed  Google Scholar 

  31. Platt, M. O., et al. Expression of cathepsin K is regulated by shear stress in cultured endothelial cells and is increased in endothelium in human atherosclerosis. Am. J. Physiol. Heart Circ. Physiol. 292(3):H1479–H1486, 2007.

    Article  CAS  PubMed  Google Scholar 

  32. Reiser, J., B. Adair, and T. Reinheckel. Specialized roles for cysteine cathepsins in health and disease. J. Clin. Investig. 120(10):3421–3431, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Rusnati, M., and M. Presta. HIV-1 Tat protein and endothelium: from protein/cell interaction to AIDS-associated pathologies. Angiogenesis 5(3):141–151, 2002.

    Article  CAS  PubMed  Google Scholar 

  34. Sevastianova, K., et al. Arterial stiffness in HIV-infected patients receiving highly active antiretroviral therapy. Antivir. Ther. 10(8):925–935, 2005.

    CAS  PubMed  Google Scholar 

  35. Spieker, L. E., et al. Rapid progression of atherosclerotic coronary artery disease in patients with human immunodeficiency virus infection. Heart Vessels 20(4):171–174, 2005.

    Article  PubMed  Google Scholar 

  36. Sukhova, G. K., G. P. Shi, D. I. Simon, H. A. Chapman, and P. Libby. Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J. Clin. Investig. 102:576–583, 1998.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Sukhova, G. K., et al. Deficiency of cathepsin S reduces atherosclerosis in LDL receptor-deficient mice. J. Clin. Investig. 111(6):897–906, 2003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Suo, J., et al. Hemodynamic shear stresses in mouse aortas: implications for atherogenesis. Arterioscler. Thromb. Vasc. Biol. 27(2):346–351, 2007.

    Article  CAS  PubMed  Google Scholar 

  39. Urbinati, C., et al. Integrin alphavbeta3 as a target for blocking HIV-1 Tat-induced endothelial cell activation in vitro and angiogenesis in vivo. Arterioscler. Thromb. Vasc. Biol. 25(11):2315–2320, 2005.

    Article  CAS  PubMed  Google Scholar 

  40. Urbinati, C., et al. Substrate-immobilized HIV-1 Tat drives VEGFR2/alpha(v)beta(3)-integrin complex formation and polarization in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 32(5):e25–e34, 2012.

    Article  CAS  PubMed  Google Scholar 

  41. van Vonderen, M. G., et al. Carotid intima-media thickness and arterial stiffness in HIV-infected patients: the role of HIV, antiretroviral therapy, and lipodystrophy. J. Acquir. Immune Defic. Syndr. 50(2):153–161, 2009.

    Article  PubMed  Google Scholar 

  42. Wilder, C. L., et al. Manipulating substrate and pH in zymography protocols selectively distinguishes cathepsins K, L, S, and V activity in cells and tissues. Arch. Biochem. Biophys. 516(1):52–57, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Yasuda, Y., et al. Cathepsin V, a novel and potent elastolytic activity expressed in activated macrophages. J. Biol. Chem. 279(35):36761–36770, 2004.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was completed partially with funding from a Creative and Novel Ideas in HIV Research (CNIHR) grant sponsored by the National Institutes of Health CFAR programme and the International AIDS Society (MOP, RLS, and RLG), NIH Award Number DP2OD007433 from the Office of the Director, National Institutes of Health (MOP), and National Science Foundation Graduate Research Fellowships (IKP and LMH). The content is solely the responsibility of the authors and does not necessarily represent the official views of the Office of the Director, National Institutes of Health or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manu O. Platt.

Additional information

Associate Editor Scott I. Simon oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, I.K., Roberts, L.M., Hansen, L. et al. Pro-Atherogenic Shear Stress and HIV Proteins Synergistically Upregulate Cathepsin K in Endothelial Cells. Ann Biomed Eng 42, 1185–1194 (2014). https://doi.org/10.1007/s10439-014-1005-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1005-9

Keywords

Navigation