Skip to main content

Advertisement

Log in

Laser Speckle Contrast Imaging of Cerebral Blood Flow

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Laser speckle contrast imaging (LSCI) has emerged over the past decade as a powerful, yet simple, method for imaging of blood flow dynamics in real time. The rapid adoption of LSCI for physiological studies is due to the relative ease and low cost of building an instrument as well as the ability to quantify blood flow changes with excellent spatial and temporal resolution. Although measurements are limited to superficial tissues with no depth resolution, LSCI has been instrumental in pre-clinical studies of neurological disorders as well as clinical applications including dermatological, neurosurgical and endoscopic studies. Recently a number of technical advances have been developed to improve the quantitative accuracy and temporal resolution of speckle imaging. This article reviews some of these recent advances and describes several applications of speckle imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ayata, C., A. K. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz. Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex. J. Cereb. Blood Flow Metab. 24(7):744–755, 2004.

    Article  PubMed  Google Scholar 

  2. Bandyopadhay, R., A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian. Speckle-visibility spectroscopy: a tool to study time-varying dynamics. Rev. Sci. Instrum. 76(9):93110, 2005.

    Article  Google Scholar 

  3. Boas, D. A., and A. K. Dunn. Laser speckle contrast imaging in biomedical optics. J. Biomed. Opt. 15(1):011109, 2010.

    Article  PubMed  Google Scholar 

  4. Boas, D. A., and A. Yodh. Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation. J. Opt. Soc. Am. A 14:192–215, 1997.

    Article  Google Scholar 

  5. Bolay, H., U. Reuter, A. K. Dunn, Z. Huang, D. A. Boas, and M. A. Moskowitz. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat. Med. 8(2):136–142, 2002.

    Article  PubMed  CAS  Google Scholar 

  6. Bonner, R., and R. Nossal. Model for laser Doppler measurements of blood flow in tissue. Appl. Opt. 20:2097–2107, 1981.

    Article  PubMed  CAS  Google Scholar 

  7. Briers, J. D. Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging. Physiol. Meas. 22(4):R35–R66, 2001.

    Article  PubMed  CAS  Google Scholar 

  8. Briers, J. D., and S. Webster. Laser Speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow. J. Biomed. Opt. 1:174–179, 1996.

    Article  Google Scholar 

  9. Dirnagl, U., C. Iadecola, and M. A. Moskowitz. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 22:391–397, 1999.

    Article  PubMed  CAS  Google Scholar 

  10. Duncan, D. D., and S. J. Kirkpatrick. Can laser speckle flowmetry be made a quantitative tool? J. Opt. Soc. Am. A Opt. Image Sci. Vis. 25(8):2088–2094, 2008.

    Article  PubMed  CAS  Google Scholar 

  11. Dunn, A. K., H. Bolay, M. A. Moskowitz, and D. A. Boas. Dynamic imaging of cerebral blood flow using laser speckle. J. Cereb. Blood Flow Metab. 21(3):195–201, 2001.

    Article  PubMed  CAS  Google Scholar 

  12. Dunn, A. K., A. Devor, A. M. Dale, and D. A. Boas. Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex. Neuroimage 27(2):279–290, 2005.

    Article  PubMed  Google Scholar 

  13. Dunn, A. K., et al. Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation. Opt. Lett. 28:28–30, 2003.

    Article  PubMed  CAS  Google Scholar 

  14. Dunphy, I., S. A. Vinogradov, and D. F. Wilson. Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence. Anal. Biochem. 310(2):191–198, 2002.

    Article  PubMed  CAS  Google Scholar 

  15. Durduran, T., et al. Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry. J. Cereb. Blood Flow Metab. 24(5):518–525, 2004.

    Article  PubMed  Google Scholar 

  16. Fercher, A., and J. Briers. Flow visualization by means of single-exposure speckle photography. Opt. Commun. 37:326–329, 1981.

    Article  Google Scholar 

  17. Forrester, K. R., J. Tulip, C. Leonard, C. Stewart, and R. C. Bray. A laser speckle imaging technique for measuring tissue perfusion. IEEE Trans. Biomed. Eng. 51(11):2074–2084, 2004.

    Article  PubMed  Google Scholar 

  18. Hecht, N., J. Woitzik, J. P. Dreier, and P. Vajkoczy. Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis. Neurosurg. Focus 27(4):E11, 2009.

    Article  PubMed  Google Scholar 

  19. Helmlinger, G., F. Yuan, M. Dellian, and R. K. Jain. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat. Med. 3(2):177–182, 1997.

    Article  PubMed  CAS  Google Scholar 

  20. Hossmann, K. A. Periinfarct depolarizations. Cerebrovasc. Brain Metab. Rev. 8:195–208, 1996.

    PubMed  CAS  Google Scholar 

  21. Huang, Y.-C., T. L. Ringold, J. S. Nelson, and B. Choi. Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks. Lasers Surg. Med. 40(3):167–173, 2008.

    Article  PubMed  Google Scholar 

  22. Jones, P. B., et al. Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia. J. Biomed. Opt. 13(4):44007–44011, 2008.

    Article  Google Scholar 

  23. Kirkpatrick, S. J., D. D. Duncan, and E. M. Wells-Gray. Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging. Opt. Lett. 33(24):2886–2888, 2008.

    Article  PubMed  Google Scholar 

  24. Lemieux, P. A., and D. J. Durian. Investigating non-Gaussian scattering processes by using n th-order intensity correlation functions. J. Opt. Soc. Am. A 16(7):1651–1664, 1999.

    Article  Google Scholar 

  25. Liu, S., P. Li, and Q. Luo. Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit. Opt. Express 16(19):14321–14329, 2008.

    Article  PubMed  Google Scholar 

  26. Lo, E. H., T. Dalkara, and M. A. Moskowitz. Mechanisms, challenges and opportunities in stroke. Nat. Rev. Neurosci. 4(5):399–415, 2003.

    Article  PubMed  CAS  Google Scholar 

  27. Mies, G., T. Iijima, and K. A. Hossmann. Correlation between peri-infarct DC shifts and ischaemic neuronal damage in rat. Neuroreport 4:709–711, 1993.

    Article  PubMed  CAS  Google Scholar 

  28. Nakamura, H., et al. Spreading depolarizations cycle around and enlarge focal ischaemic brain lesions. Brain 133(7):1994–2006, 2010.

    Article  PubMed  Google Scholar 

  29. Parthasarathy, A. B., S. M. S. Kazmi, and A. K. Dunn. Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging. Biomed. Opt. Express 1(1):246–259, 2010.

    Article  PubMed  Google Scholar 

  30. Parthasarathy, A. B., W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn. Robust flow measurement with multi-exposure speckle imaging. Opt. Express 16(3):1975–1989, 2008.

    Article  PubMed  Google Scholar 

  31. Parthasarathy, A. B., E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn. Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study. J. Biomed. Opt. 15(6):066030, 2010.

    Article  PubMed  Google Scholar 

  32. Ponticorvo, A., and A. K. Dunn. Simultaneous imaging of oxygen tension and blood flow in animals using a digital micromirror device. Opt. Express 18(8):8160–8170, 2010.

    Article  PubMed  CAS  Google Scholar 

  33. Raabe, A., J. Beck, R. Gerlach, M. Zimmermann, and V. Seifert. Near-infrared indocyanine green video angiography: a new method for intraoperative assessment of vascular flow. Neurosurgery 52(1):132–139, 2003; discussion 139

    PubMed  Google Scholar 

  34. Rumsey, W. L., J. M. Vanderkooi, and D. F. Wilson. Imaging of phosphorescence: a novel method for measuring oxygen distribution in perfused tissue. Science 241(4873):1649, 1988.

    Article  PubMed  CAS  Google Scholar 

  35. Sakadzić, S., et al. Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression. Appl. Opt. 48(10):D169–D177, 2009.

    Article  PubMed  Google Scholar 

  36. Shin, H. K., A. K. Dunn, P. B. Jones, D. A. Boas, M. A. Moskowitz, and C. Ayata. Vasoconstrictive neurovascular coupling during focal ischemic depolarizations. J. Cereb. Blood Flow Metab. 26:1018–1030, 2005.

    Article  PubMed  Google Scholar 

  37. Shin, H. K., et al. Normobaric hyperoxia improves cerebral blood flow and oxygenation, and inhibits peri-infarct depolarizations in experimental focal ischaemia. Brain 130(6):1631, 2007.

    Article  PubMed  Google Scholar 

  38. Shonat, R. D., and A. C. Kight. Oxygen tension imaging in the mouse retina. Ann. Biomed. Eng. 31(9):1084–1096, 2003.

    Article  PubMed  Google Scholar 

  39. Shonat, R. D., K. N. Richmond, and P. C. Johnson. Phosphorescence quenching and the microcirculation: an automated, multipoint oxygen tension measuring instrument. Rev. Sci. Instrum. 66:5075, 1995.

    Article  CAS  Google Scholar 

  40. Shonat, R. D., E. S. Wachman, W. Niu, A. P. Koretsky, and D. L. Farkas. Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope. Biophys. J. 73(3):1223–1231, 1997.

    Article  PubMed  CAS  Google Scholar 

  41. Shonat, R. D., D. F. Wilson, C. E. Riva, and M. Pawlowski. Oxygen distribution in the retinal and choroidal vessels of the cat as measured by a new phosphorescence imaging method. Appl. Opt. 31(19):3711–3718, 1992.

    Article  PubMed  CAS  Google Scholar 

  42. Strong, A. J., E. L. Bezzina, P. J. Anderson, M. G. Boutelle, S. E. Hopwood, and A. K. Dunn. Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: quantitation of perfusion and detection of peri-infarct depolarisations. J. Cereb. Blood Flow Metab. 26(5):645–653, 2006.

    Article  PubMed  Google Scholar 

  43. Tamaki, Y., M. Araie, E. Kawamoto, S. Eguchi, and H. Fujii. Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon. Invest. Ophthalmol. Vis. Sci 35(11):3825–3834, 1994.

    PubMed  CAS  Google Scholar 

  44. Tom, W. J., A. Ponticorvo, and A. K. Dunn. Efficient processing of laser speckle contrast images. IEEE Trans. Med. Imaging 27(12):1728–1738, 2008.

    Article  PubMed  Google Scholar 

  45. Tsai, A., P. C. Johnson, and M. Intaglietta. Oxygen gradients in the microcirculation. Physiol. Rev. 83(3):933–963, 2003.

    PubMed  CAS  Google Scholar 

  46. Vinogradov, S. A., M. A. Fernandez-Seara, B. W. Dugan, and D. F. Wilson. Frequency domain instrument for measuring phosphorescence lifetime distributions in heterogeneous samples. Rev. Sci. Instrum. 7(8):3396–3406, 2001.

    Article  Google Scholar 

  47. Yuan, S., A. Devor, D. A. Boas, and A. K. Dunn. Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging. Appl. Opt. 44(10):1823–1830, 2005.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author acknowledges Shams Kazmi, Adrien Ponticorvo, Lisa Richards, Erica Weber, Ashwin Parthasarathy, and Anthony Salvaggio for helpful discussions and assistance with the figures. This work was supported by the National Institutes of Health (R01EB011556), National Science Foundation (CBET/0737731), American Heart Association (0735136N) and the Coulter Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew K. Dunn.

Additional information

Associate Editor Daniel Elson oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunn, A.K. Laser Speckle Contrast Imaging of Cerebral Blood Flow. Ann Biomed Eng 40, 367–377 (2012). https://doi.org/10.1007/s10439-011-0469-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0469-0

Keywords

Navigation