Skip to main content
Log in

Lensfree Optofluidic Microscopy and Tomography

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Microfluidic devices aim at miniaturizing, automating, and lowering the cost of chemical and biological sample manipulation and detection, hence creating new opportunities for lab-on-a-chip platforms. Recently, optofluidic devices have also emerged where optics is used to enhance the functionality and the performance of microfluidic components in general. Lensfree imaging within microfluidic channels is one such optofluidic platform, and in this article, we focus on the holographic implementation of lensfree optofluidic microscopy and tomography, which might provide a simpler and more powerful solution for three-dimensional (3D) on-chip imaging. This lensfree optofluidic imaging platform utilizes partially coherent digital in-line holography to allow phase and amplitude imaging of specimens flowing through micro-channels, and takes advantage of the fluidic flow to achieve higher spatial resolution imaging compared to a stationary specimen on the same chip. In addition to this, 3D tomographic images of the same samples can also be reconstructed by capturing lensfree projection images of the samples at various illumination angles as a function of the fluidic flow. Based on lensfree digital holographic imaging, this optofluidic microscopy and tomography concept could be valuable especially for providing a compact, yet powerful toolset for lab-on-a-chip devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Agarwal, A., and R. K. Sharma. Automation is the key to standardized semen analysis using the automated SQA-V sperm quality analyzer. Fertil. Steril. 87:156–162, 2007.

    Article  PubMed  Google Scholar 

  2. Arslan, I., J. R. Tong, and P. A. Midgley. Reducing the missing wedge: high-resolution dual-axis tomography of inorganic materials. Ultramicroscopy 106:994–1000, 2006.

    Article  PubMed  CAS  Google Scholar 

  3. Bishara, W., U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array. Lab Chip 11:1276, 2011.

    Article  PubMed  CAS  Google Scholar 

  4. Bishara, W., T.-W. Su, A. F. Coskun, and A. Ozcan. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution. Opt. Express 18:11181, 2010.

    Article  PubMed  Google Scholar 

  5. Brady, D. J., K. Choi, D. L. Marks, R. Horisaki, and S. Lim. Compressive holography. Opt. Express 17:13040–13049, 2009.

    Article  PubMed  CAS  Google Scholar 

  6. Charrière, F., N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz. Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba. Opt. Express 14:7005–7013, 2006.

    Article  PubMed  Google Scholar 

  7. Coskun, A. F., I. Sencan, T. Su, and A. Ozcan. Lensfree fluorescent on-chip imaging of transgenic Caenorhabditis elegans over an ultra-wide field-of-view. PLoS One 6(1):e15955, 2011.

    Article  PubMed  CAS  Google Scholar 

  8. Coskun, A. F., I. Sencan, T. Su, and A. Ozcan. Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip. Analyst 136(17):3512–3518, 2011.

    Article  PubMed  CAS  Google Scholar 

  9. Cuche, E., P. Marquet, and C. Depeursinge. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Appl. Opt. 39:4070, 2000.

    Article  PubMed  CAS  Google Scholar 

  10. Cui, X., L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging. Proc. Natl Acad. Sci. USA 105:10670–10675, 2008.

    Article  PubMed  CAS  Google Scholar 

  11. Debailleul, M., B. Simon, V. Georges, O. Haeberle, and V. Lauer. Holographic microscopy and diffractive microtomography of transparent samples. Meas. Sci. Technol. 19:074009, 2008.

    Article  Google Scholar 

  12. Fainman, Y., L. Lee, D. Psaltis, and C. Yang. Optofluidics: Fundamentals, Devices, and Applications. New York: McGraw-Hill, 2009.

    Google Scholar 

  13. Fauver, M., and E. J. Seibel. Three-dimensional imaging of single isolated cell nuclei using optical projection tomography. Opt. Express 13:4210–4223, 2005.

    Article  PubMed  Google Scholar 

  14. Fienup, J. R. Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett. 3:27, 1978.

    Article  PubMed  CAS  Google Scholar 

  15. Garcia-Sucerquia, J., W. Xu, M. H. Jericho, and H. J. Kreuzer. Immersion digital in-line holographic microscopy. Opt. Lett. 31:1211, 2006.

    Article  PubMed  CAS  Google Scholar 

  16. Haeberle, O., K. Belkebir, H. Giovaninni, and A. Sentenac. Tomographic diffractive microscopy: basics, techniques and perspectives. J. Mod. Opt. 57:686–699, 2010.

    Article  Google Scholar 

  17. Hahn, J., S. Lim, K. Choi, R. Horisaki, and D. J. Brady. Video-rate compressive holographic microscopic tomography. Opt. Express 19:7289–7298, 2011.

    Article  PubMed  Google Scholar 

  18. Hardie, R. C. High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system. Opt. Eng. 37:247, 1998.

    Article  Google Scholar 

  19. Heng, X., D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang. Optofluidic microscopy—a method for implementing a high resolution optical microscope on a chip. Lab Chip 6:1274–1276, 2006.

    Article  PubMed  CAS  Google Scholar 

  20. Isikman, S. O., W. Bishara, S. Mavandadi, S. W. Yu, S. Feng, R. Lau, and A. Ozcan. Lens-free optical tomographic microscope with a large imaging volume on a chip. Proc. Natl Acad. Sci. 108:7296–7301, 2011.

    Article  PubMed  CAS  Google Scholar 

  21. Isikman, S. O., W. Bishara, H. Zhu, and A. Ozcan. Optofluidic tomography on a chip. Appl. Phys. Lett. 98:161109, 2011.

    Article  PubMed  Google Scholar 

  22. Lee, L. M., X. Cui, and C. Yang. The application of optofluidic microscopy for imaging Giardia lamblia trophozoites and cysts. Biomed. Microdevices 11:951–958, 2009.

    Article  CAS  Google Scholar 

  23. Li, Z., Z. Zhang, T. Emery, A. Scherer, and D. Psaltis. Single mode optofluidic distributed feedback dye laser. Opt. Express 14:696, 2006.

    Article  PubMed  Google Scholar 

  24. Meng, H., and F. Hussain. In-line recording and off-axis viewing technique for holographic particle velocimetry. Appl. Opt. 34:1827–1840, 1995.

    Article  PubMed  CAS  Google Scholar 

  25. Monat, C., P. Domachuk, and B. J. Eggleton. Integrated optofluidics: a new river of light. Nat. Photon. 1:106–114, 2007.

    Article  CAS  Google Scholar 

  26. Mudanyali, O., D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip 10:1417, 2010.

    Article  PubMed  CAS  Google Scholar 

  27. Oh, C., S. O. Isikman, B. Khademhosseinieh, and A. Ozcan. On-chip differential interference contrast microscopy using lensless digital holography. Opt. Express 18:4717, 2010.

    Article  PubMed  CAS  Google Scholar 

  28. Pang, S., X. Cui, J. DeModena, Y. M. Wang, P. Sternberg, and C. Yang. Implementation of color capable optofluidic microscope on a RGB CMOS color sensor chip substrate. Lab Chip 10:411–414, 2010.

    Article  PubMed  CAS  Google Scholar 

  29. Park, S. C., M. K. Park, and M. G. Kang. Super-resolution image reconstruction: a technical overview. IEEE Signal Process. Mag. 20:21–36, 2003.

    Article  Google Scholar 

  30. Psaltis, D., S. R. Quake, and C. Yang. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386, 2006.

    Article  PubMed  CAS  Google Scholar 

  31. Radermacher, M. Weighted back-projection methods. In: Electron Tomography: Methods for Three Dimensional Visualization of Structures in the Cell (2nd ed.). New York: Springer, 2006.

  32. Sharpe, J. Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296:541–545, 2002.

    Article  PubMed  CAS  Google Scholar 

  33. Squires, T., and S. Quake. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77:977–1026, 2005.

    Article  CAS  Google Scholar 

  34. Sung, Y., W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld. Optical diffraction tomography for high resolution live cell imaging. Opt. Express 17:266–277, 2009.

    Article  PubMed  CAS  Google Scholar 

  35. Tseng, D., O. Mudanyali, C. Oztoprak, O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan. Lensfree microscopy on a cellphone. Lab Chip 10:1787, 2010.

    Article  PubMed  CAS  Google Scholar 

  36. Verhoeven, D. Limited-data computed tomography algorithms for the physical sciences. Appl. Opt. 32:3654–3736, 1993.

    Article  Google Scholar 

  37. Whitesides, G. M. The origins and the future of microfluidics. Nature 442:368–373, 2006.

    Article  PubMed  CAS  Google Scholar 

  38. Yu, L., and M. K. Kim. Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method. Opt. Lett. 30:2092–2094, 2005.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aydogan Ozcan.

Additional information

Associate Editor Daniel Elson oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishara, W., Isikman, S.O. & Ozcan, A. Lensfree Optofluidic Microscopy and Tomography. Ann Biomed Eng 40, 251–262 (2012). https://doi.org/10.1007/s10439-011-0385-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0385-3

Keywords

Navigation