Skip to main content
Log in

Cell Attachment–Detachment Control on Temperature-Responsive Thin Surfaces for Novel Tissue Engineering

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Temperature-responsive intelligent surfaces, prepared by the modification of an interface mainly with poly(N-isopropylacrylamide) and its derivatives, have been investigated. Such surfaces exhibit temperature-responsive hydrophilic/hydrophobic alterations with external temperature changes, which, in turn, result in thermally modulated attachment and detachment with cells. The advantage of this system is that cells cultured on such temperature-responsive surfaces can be recovered as single cells and/or confluent cell sheets, while keeping the deposited extracellular matrix intact, simply by lowering the temperature without conventional enzymatic treatment. Here, we focus and compare various methods of producing temperature-responsive surfaces for controlling cell attachment/detachment. Spontaneous cell attachment and detachment using several types of temperature-responsive surfaces are mentioned and various effects, such as film thickness and polymer conformation, are discussed. In addition, the development of the next generation of temperature-responsive surfaces using modifications of the polymer coating to allow for rapid cell recovery is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

AAc:

Acrylic acid

AFM:

Atomic force microscopy

ATR-FTIR:

Attenuated total reflection-Fourier transform

ATRP:

Atom transfer radical polymerization

CIPAAm:

2-Carboxyisopropylacrylamide

CS:

Coverslips

EB:

Electron beam

ECM:

Extra cellular matrix

EC:

Bovine aortic endothelial cell

EDC:

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide

FN:

Fibronectin

HPDL:

Human periodontal ligament cells

HUVEC:

Human umbilical vein endothelial cells

IPAAm:

N-isopropylacrylamide

LCST:

Lower critical solution temperature

MDCK:

Madin-Darby canine kidney

NHS:

N-hydroxysuccinimide

PEG:

Poly(ethylene glycol)

RCO:

Rat calvarial osteoblasts

RGD:

Arg-Gly-Asp

RGDS:

Arg-Gly-Asp-Ser

TCPS:

Tissue Culture Polystyrene

ToF-SIMS:

Time of flight secondary ion mass spectrometer

XPS:

X-ray photoelectron spectroscopy

References

  1. Akiyama, Y., A. Kikuchi, M. Yamato, and T. Okano. Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir 20(13):5506–5511, 2004.

    Article  PubMed  CAS  Google Scholar 

  2. Alarco’n, C. H., T. Farhan, V. L. Osborne, W. T. S. Huck, and C. Alexander. Bioadhesion at micro-patterned stimuli-responsive polymer brushes. J. Mater. Chem. 15(21):2089–2094, 2005.

    Article  CAS  Google Scholar 

  3. Aoyagi, T., M. Ebara, K. Sakai, Y. Sakurai, and T. Okano. Novel bifunctional polymer with reactivity and temperature sensitivity. J. Biomater. Sci. Polym. Ed. 11:101–110, 2000.

    Article  PubMed  CAS  Google Scholar 

  4. Barrandon, Y., and H. Green. Cell migration is essential for sustained growth of keratinocyte colonies: the roles of transforming growth factor-α and epidermal growth factor. Cell 50(7):1131–1137, 1987.

    Article  PubMed  CAS  Google Scholar 

  5. Canavan, H. E., X. Cheng, D. J. Graham, B. D. Ratner, and D. G. Castner. Cell sheet detachment affects the extracellular matrix: a surface science study comparing thermal liftoff, enzymatic, and mechanical methods. J. Biomed. Mater. Res. A 75A(1):1–13, 2005.

    Article  CAS  Google Scholar 

  6. Canavan, H. E., X. Cheng, D. J. Graham, B. D. Ratner, and D. G. Castner. Surface characterization of the extracellular matrix remaining after cell detachment from a thermoresponsive polymer. Langmuir 21(5):1949–1955, 2004.

    Article  CAS  Google Scholar 

  7. Canavan, H. E., D. J. Graham, X. Cheng, B. D. Ratner, and D. G. Castner. Comparison of native extracellular matrix with adsorbed protein films using secondary ion mass spectrometry. Langmuir 23(1):50–56, 2007.

    Article  PubMed  CAS  Google Scholar 

  8. Cheng, X., H. E. Canavan, M. J. Stein, J. R. Hull, S. J. Kweskin, M. S. Wagner, G. A. Somorjai, D. G. Castner, and B. D. Ratner. Surface chemical and mechanical properties of plasma-polymerized N-isopropylacrylamide. Langmuir 21(17):7833–7841, 2005.

    Article  PubMed  CAS  Google Scholar 

  9. Chung, S. Y. Bladder tissue-engineering: a new practical solution? Lancet 367(9518):1215–1216, 2006.

    Article  PubMed  Google Scholar 

  10. da Silva, R. M. P., J. F. Mano, and R. L. Reis. Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries. Trends Biotechnol. 25(12):577–583, 2007.

    Article  PubMed  CAS  Google Scholar 

  11. Ebara, M., M. Yamato, T. Aoyagi, A. Kikuchi, K. Sakai, and T. Okano. A novel approach to observing synergy effects of PHSRN on integrin-RGD binding using intelligent surfaces. Adv. Mater. 20(16):3034–3038, 2008.

    Article  CAS  Google Scholar 

  12. Ebara, M., M. Yamato, T. Aoyagi, A. Kikuchi, K. Sakai, and T. Okano. Immobilization of cell-adhesive peptides to temperature-responsive surfaces facilitates both serum-free cell adhesion and noninvasive cell harvest. Tissue Eng. 10(7–8):1125–1135, 2004.

    PubMed  CAS  Google Scholar 

  13. Ebara, M., M. Yamato, T. Aoyagi, A. Kikuchi, K. Sakai, and T. Okano. Temperature-responsive cell culture surfaces enable “on-off” affinity control between cell integrins and RGDS ligands. Biomacromolecules 5(2):505–510, 2004.

    Article  PubMed  CAS  Google Scholar 

  14. Ebara, M., M. Yamato, M. Hirose, T. Aoyagi, A. Kikuchi, K. Sakai, and T. Okano. Copolymerization of 2-carboxyisopropylacrylamide with N-isopropylacrylamide accelerates cell detachment from grafted surfaces by reducing temperature. Biomacromolecules 4(2):344–349, 2003.

    Article  PubMed  CAS  Google Scholar 

  15. Fillinger, M. F., E. R. Reinitz, R. A. Schwartz, D. E. Resetarits, A. M. Paskanik, D. Bruch, and C. E. Bredenberg. Graft geometry and venous intimal-medial hyperplasia in arteriovenous loop grafts. J. Vasc. Surg. 11(4):556–566, 1990.

    Article  PubMed  CAS  Google Scholar 

  16. Freed, L. E., G. Vunjak-Novakovic, R. J. Biron, D. B. Eagles, D. C. Lesnoy, S. K. Barlow, and R. Langer. Biodegradable polymer scaffolds for tissue engineering. Nat. Biotechnol. 12(7):689–693, 1994.

    Article  CAS  Google Scholar 

  17. Fukumori, K., Y. Akiyama, M. Yamato, J. Kobayashi, K. Sakai, and T. Okano. Temperature-responsive glass coverslips with an ultrathin poly (N-isopropylacrylamide) layer. Acta Biomater. 5(1):470–476, 2009.

    Article  PubMed  CAS  Google Scholar 

  18. Guillaume-Gentil, O., Y. Akiyama, M. Schuler, C. Tang, M. Textor, M. Yamato, T. Okano, and J. Vörös. Polyelectrolyte coatings with a potential for electronic control and cell sheet engineering. Adv. Mater. 20(3):560–565, 2008.

    Article  CAS  Google Scholar 

  19. Gupta, S., P. Rajvanshi, R. Sokhi, S. Slehria, A. Yam, A. M. Kerr, and P. Novikoff. Entry and integration of transplanted hepatocytes in rat liver plates occur by disruption of hepatic sinusoidal endothelium. Hepatology 29(2):509–519, 1999.

    Article  PubMed  CAS  Google Scholar 

  20. Heskins, M., and J. E. Guillet. Solution properties of poly(N-isopropylacrylamide). J. Macromol. Sci. A 2(8):1441–1455, 1968.

    Article  CAS  Google Scholar 

  21. Houseman, B. T., J. H. Huh, S. J. Kron, and M. Mrksich. Peptide chips for the quantitative evaluation of protein kinase activity. Nat. Biotechnol. 20:270–274, 2002.

    Article  PubMed  CAS  Google Scholar 

  22. Ibusuki, S., Y. Iwamoto, and T. Matsuda. System-engineered cartilage using poly(N-isopropylacrylamide)-grafted gelatin as in situ-formable scaffold: in vivo performance. Tissue Eng. 9(6):1133–1142, 2003.

    Article  PubMed  CAS  Google Scholar 

  23. Idota, N., A. Kikuchi, J. Kobayashi, Y. Akiyama, and T. Okano. Thermal modulated interaction of aqueous steroids using polymer-grafted capillaries. Langmuir 22(1):425–430, 2006.

    Article  PubMed  CAS  Google Scholar 

  24. Idota, N., A. Kikuchi, J. Kobayashi, K. Sakai, and T. Okano. Microfluidic valves comprising nanolayered thermoresponsive polymer-grafted capillaries. Adv. Mater. 17(22):2723–2727, 2005.

    Article  CAS  Google Scholar 

  25. Irvine, D. J., A. M. Mayes, and L. G. Griffith. Nanoscale clustering of RGD peptides at surfaces using comb polymers. 1. Synthesis and characterization of comb thin films. Biomacromolecules 2(1):85–94, 2000.

    Article  CAS  Google Scholar 

  26. Iwata, T., M. Yamato, H. Tsuchioka, R. Takagi, S. Mukobata, K. Washio, T. Okano, and I. Ishikawa. Periodontal regeneration with multi-layered periodontal ligament-derived cell sheets in a canine model. Biomaterials 30(14):2716–2723, 2009.

    Article  PubMed  CAS  Google Scholar 

  27. Jones, D. M., J. R. Smith, W. T. S. Huck, and C. Alexander. Variable adhesion of micropatterned thermoresponsive polymer brushes: AFM investigations of poly(N-isopropylacrylamide) brushes prepared by surface-initiated polymerizations. Adv. Mater. 14(16):1130–1134, 2002.

    Article  CAS  Google Scholar 

  28. Keselowsky, B. G., D. M. Collard, and A. J. Garcia. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc. Natl Acad. Sci. USA 102(17):5953–5957, 2005.

    Article  PubMed  CAS  Google Scholar 

  29. Kikuchi, A., and T. Okano. Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. J. Controlled Release 101(1–3):69–84, 2005.

    Article  CAS  Google Scholar 

  30. Kobayashi, J., A. Kikuchi, K. Sakai, and T. Okano. Aqueous chromatography utilizing pH-/temperature responsive polymer stationary phases to separate ionic bioactive compounds. Anal. Chem. 73(9):2027–2033, 2001.

    Article  PubMed  CAS  Google Scholar 

  31. Koo, L. Y., D. J. Irvine, A. M. Mayes, D. A. Lauffenburger, and L. G. Griffith. Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus. J. Cell Sci 115(7):1423–1433, 2002.

    PubMed  CAS  Google Scholar 

  32. Kushida, A., M. Yamato, C. Konno, A. Kikuchi, Y. Sakurai, and T. Okano. Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-responsive culture surfaces. J. Biomed. Mater. Res. 45(4):355–362, 1999.

    Article  PubMed  CAS  Google Scholar 

  33. Kushida, A., M. Yamato, C. Konno, A. Kikuchi, Y. Sakurai, and T. Okano. Temperature-responsive culture dishes allow nonenzymatic harvest of differentiated Madin-Darby canine kidney (MDCK) cell sheets. J. Biomed. Mater. Res. 51(2):216–223, 2000.

    Article  PubMed  CAS  Google Scholar 

  34. Kwon, O. H., A. Kikuchi, M. Yamato, and T. Okano. Accelerated cell sheet recovery by co-grafting of PEG with PIPAAm onto porous cell culture membranes. Biomaterials 24(7):1223–1232, 2003.

    Article  Google Scholar 

  35. Kwon, O. H., A. Kikuchi, M. Yamato, Y. Sakurai, and T. Okano. Rapid cell sheet detachment from poly(N-isopropylacrylamide)-grafted porous cell culture membranes. J. Biomed. Mater. Res. 50(1):82–89, 2000.

    Article  PubMed  CAS  Google Scholar 

  36. Langer, R., and J. Vacanti. Tissue engineering. Science 260(5110):920–926, 1993.

    Article  PubMed  CAS  Google Scholar 

  37. Langer, R., and J. Vacanti. Tissue engineering: the challenges ahead. Sci. Am. 280(4):86–89, 1999.

    Article  PubMed  CAS  Google Scholar 

  38. Leahy, D. J., I. Aukhil, and H. P. Erickson. 2 Dimensional crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell 84(1):155–164, 1996.

    Article  PubMed  CAS  Google Scholar 

  39. Leahy, D. J., W. A. Hendrickson, I. Aukhil, and H. P. Erickson. Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science 258(5084):987–991, 1992.

    Article  PubMed  CAS  Google Scholar 

  40. Massia, S. P., and J. A. Hubbell. An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J. Cell Biol. 114(5):1089–1100, 1991.

    Article  PubMed  CAS  Google Scholar 

  41. Matsuda, T. Poly(N-isopropylacrylamide)-grafted gelatin as a thermoresponsive cell-adhesive, mold-releasable material for shape-engineered tissues. J. Biomater. Sci. Polym. Ed. 15:947–955, 2004.

    Article  PubMed  CAS  Google Scholar 

  42. Memon, I. A., Y. Sawa, N. Fukushima, G. Matsumiya, S. Miyagawa, S. Taketani, S. K. Sakakida, H. Kondoh, A. N. Aleshin, T. Shimizu, T. Okano, and H. Matsuda. Repair of impaired myocardium by means of implantation of engineered autologous myoblast sheets. J. Thorac. Cardiovasc. Surg. 130(5):1333–1341, 2005.

    Article  PubMed  Google Scholar 

  43. Mizutani, A., A. Kikuchi, M. Yamato, H. Kanazawa, and T. Okano. Preparation of thermoresponsive polymer brush surfaces and their interaction with cells. Biomaterials 29(13):2073–2081, 2008.

    Article  PubMed  CAS  Google Scholar 

  44. Nagase, K., J. Kobayashi, A. Kikuchi, Y. Akiyama, H. Kanazawa, and T. Okano. Interfacial property modulation of thermoresponsive polymer brush surfaces and their interaction with biomolecules. Langmuir 23(18):9409–9415, 2007.

    Article  PubMed  CAS  Google Scholar 

  45. Nagase, K., J. Kobayashi, A. Kikuchi, Y. Akiyama, H. Kanazawa, and T. Okano. Effects of graft densities and chain lengths on separation of bioactive compounds by nanolayered thermoresponsive polymer brush surfaces. Langmuir 24(2):511–517, 2008.

    Article  PubMed  CAS  Google Scholar 

  46. Nakayama, M., J. E. Chung, T. Miyazaki, M. Yokoyama, K. Sakai, and T. Okano. Thermal modulation of intracellular drug distribution using thermoresponsive polymeric micelles. React. Funct. Polym. 67(11):1398–1407, 2007.

    Article  CAS  Google Scholar 

  47. Nakayama, M., and T. Okano. Polymer terminal group effects on properties of thermoresponsive polymeric micelles with controlled outer-shell chain lengths. Biomacromolecules 6(4):2320–2327, 2005.

    Article  PubMed  CAS  Google Scholar 

  48. Nishida, K., M. Yamato, Y. Hayashida, K. Watanabe, N. Maeda, H. Watanabe, K. Yamamoto, S. Nagai, A. Kikuchi, Y. Tano, and T. Okano. Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation 77(3):379–385, 2004.

    Article  PubMed  Google Scholar 

  49. Nishida, K., M. Yamato, Y. Hayashida, K. Watanabe, K. Yamamoto, E. Adachi, S. Nagai, A. Kikuchi, N. Maeda, H. Watanabe, T. Okano, and Y. Tano. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N. Engl. J. Med. 351(12):1187–1196, 2004.

    Article  PubMed  CAS  Google Scholar 

  50. Ohashi, K., T. Yokoyama, M. Yamato, H. Kuge, H. Kanehiro, M. Tsutsumi, T. Amanuma, H. Iwata, J. Yang, T. Okano, and Y. Nakajima. Engineering functional two- and three-dimensional liver systems in vivo using hepatic tissue sheets. Nat. Med. 13(7):880–885, 2007.

    Article  PubMed  CAS  Google Scholar 

  51. Ohki, T., M. Yamato, D. Murakami, R. Takagi, J. Yang, H. Namiki, T. Okano, and K. Takasaki. Treatment of oesophageal ulcerations using endoscopic transplantation of tissue-engineered autologous oral mucosal epithelial cell sheets in a canine model. Gut 55(12):1704–1710, 2006.

    Article  PubMed  CAS  Google Scholar 

  52. Ohya, S., S. Kidoaki, and T. Matsuda. Poly(N-isopropylacrylamide) (PNIPAM)-grafted gelatin hydrogel surfaces: interrelationship between microscopic structure and mechanical property of surface regions and cell adhesiveness. Biomaterials 26(16):3105, 2005.

    Article  PubMed  CAS  Google Scholar 

  53. Ohya, S., and T. Matsuda. Poly (N-isopropylacrylamide) (PNIPAM)-grafted gelatin as thermoresponsive three-dimensional artificial extracellular matrix: molecular and formulation parameters vs. cell proliferation potential. J. Biomater. Sci. Polym. Ed. 16:809–827, 2005.

    Article  PubMed  CAS  Google Scholar 

  54. Okano, T., N. Yamada, M. Okuhara, H. Sakai, and Y. Sakurai. Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials 16(4):297–303, 1995.

    Article  PubMed  CAS  Google Scholar 

  55. Okano, T., N. Yamada, H. Sakai, and Y. Sakurai. A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J. Biomed. Mater. Res. 27(10):1243–1251, 1993.

    Article  PubMed  CAS  Google Scholar 

  56. Pan, Y. V., R. A. Wesley, R. Luginbuhl, D. D. Denton, and B. D. Ratner. Plasma polymerized N-isopropylacrylamide: synthesis and characterization of a smart thermally responsive coating. Biomacromolecules 2(1):32–36, 2000.

    Article  CAS  Google Scholar 

  57. Pytela, R., M. D. Pierschbacher, M. H. Ginsberg, E. F. Plow, and E. Ruoslahti. Platelet membrane glycoprotein IIb/IIIa: member of a family of Arg-Gly-Asp-specific adhesion receptors. Science 231(4745):1559–1562, 1986.

    Article  PubMed  CAS  Google Scholar 

  58. Shimizu, T., H. Sekine, Y. Isoi, M. Yamato, A. Kikuchi, and T. Okano. Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng. 12(3):499–507, 2006.

    Article  PubMed  CAS  Google Scholar 

  59. Shimizu, T., H. Sekine, J. Yang, Y. Isoi, M. Yamato, A. Kikuchi, E. Kobayashi, and T. Okano. Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. Faseb J. 20(1):708–710, 2006.

    PubMed  CAS  Google Scholar 

  60. Shimizu, T., M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ. Res. 90(3):E40–E48, 2002.

    Article  PubMed  CAS  Google Scholar 

  61. Shimizu, T., M. Yamato, A. Kikuchi, and T. Okano. Cell sheet engineering for myocardial tissue reconstruction. Biomaterials 24(13):2309–2316, 2003.

    Article  PubMed  CAS  Google Scholar 

  62. Takei, Y. G., T. Aoki, K. Sanui, N. Ogata, T. Okano, and Y. Sakurai. Temperature-responsive bioconjugates. 1. Synthesis of temperature-responsive oligomers with reactive end groups and their coupling to biomolecules. Bioconjug. Chem. 4(1):42–46, 1993.

    Article  PubMed  CAS  Google Scholar 

  63. Takei, Y. G., T. Aoki, K. Sanui, N. Ogata, Y. Sakurai, and T. Okano. Dynamic contact angle measurement of temperature-responsive surface properties for poly(N-isopropylacrylamide) grafted surfaces. Macromolecules 27(21):6163–6166, 1994.

    Article  CAS  Google Scholar 

  64. Takezawa, T., Y. Mori, and K. Yoshizato. Cell culture on a thermo-responsive polymer surface. Nat. Biotechnol. 8(9):854–856, 1990.

    Article  CAS  Google Scholar 

  65. Takezawa, T., M. Yamazaki, Y. Mori, T. Yonaha, and K. Yoshizato. Morphological and immuno-cytochemical characterization of a hetero-spheroid composed of fibroblasts and hepatocytes. J. Cell Sci. 101(3):495–501, 1992.

    PubMed  CAS  Google Scholar 

  66. Todaro, G. J., and H. Green. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol. 17(2):299–313, 1963.

    Article  PubMed  CAS  Google Scholar 

  67. von Recum, H., S. W. Kim, A. Kikuchi, M. Okuhara, Y. Sakurai, and T. Okano. Novel thermally reversible hydrogel as detachable cell culture substrate. J. Biomed. Mater. Res. 40(4):631–639, 1998.

    Article  Google Scholar 

  68. von Recum, H., A. Kikuchi, M. Yamato, Y. Sakurai, T. Okano, and S. W. Kim. Growth factor and matrix molecules preserve cell function on thermally responsive culture surfaces. Tissue Eng. 5(3):251–265, 1999.

    Article  Google Scholar 

  69. Whitesides, G. M., J. P. Mathias, and C. T. Seto. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254(5036):1312–1319, 1991.

    Article  PubMed  CAS  Google Scholar 

  70. Yamada, N., T. Okano, K. Sakai, F. Karikusa, Y. Sawasaki, and Y. Sakurai. Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Makromol. Rapid Commun. 11(11):571–576, 1990.

    Article  CAS  Google Scholar 

  71. Yamato, M., C. Konno, A. Kushida, M. Hirose, M. Utsumi, A. Kikuchi, and T. Okano. Release of adsorbed fibronectin from temperature-responsive culture surfaces requires cellular activity. Biomaterials 21(10):981–986, 2000.

    Article  PubMed  CAS  Google Scholar 

  72. Yamato, M., M. Okuhara, F. Karikusa, A. Kikuchi, Y. Sakurai, and T. Okano. Signal transduction and cytoskeletal reorganization are required for cell detachment from cell culture surfaces grafted with a temperature-responsive polymer. J. Biomed. Mater. Res. 44(1):44–52, 1999.

    Article  PubMed  CAS  Google Scholar 

  73. Yang, J., M. Yamato, T. Shimizu, H. Sekine, K. Ohashi, M. Kanzaki, T. Ohki, K. Nishida, and T. Okano. Reconstruction of functional tissues with cell sheet engineering. Biomaterials 28(34):5033–5043, 2007.

    Article  PubMed  CAS  Google Scholar 

  74. Yoshida, R., K. Uchida, Y. Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai, and T. Okano. Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature 374(6519):240–242, 1995.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present research was financially supported by Formation of Innovation Center for fusion of Advanced Technologies in the Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The authors are grateful to Dr. N. Ueno (Tokyo Women’s Medical University) for her valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruo Okano.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumashiro, Y., Yamato, M. & Okano, T. Cell Attachment–Detachment Control on Temperature-Responsive Thin Surfaces for Novel Tissue Engineering. Ann Biomed Eng 38, 1977–1988 (2010). https://doi.org/10.1007/s10439-010-0035-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0035-1

Keywords

Navigation