Skip to main content
Log in

Functional Modulation of ES-Derived Hepatocyte Lineage Cells via Substrate Compliance Alteration

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Pluripotent embryonic stem cells represent a promising renewable cell source to generate a variety of differentiated cell types including hepatocyte lineage cells, and may ultimately be incorporated into extracorporeal bioartificial liver devices and cell replacement therapies. Recently, we and others have utilized sodium butyrate to directly differentiate hepatocyte-like cells from murine embryonic stem cells cultured in a monolayer configuration. However, to incorporate stem cell technology into clinical and pharmaceutical applications, and hopefully increase the therapeutic potential of these differentiated cells for liver disease treatment, a major challenge remains in sustaining differentiated functions for an extended period of time in their secondary culture environment. In the present work, we have investigated the use of polyacrylamide hydrogels with defined mechanical compliances as a cell culture platform for improving and/or stabilizing functions of these hepatocyte-like cells. Several functional assays, e.g., urea secretion, intracellular albumin content, and albumin secretion, were performed to characterize hepatic functions of cells on polyacrylamide gels with stiffnesses of 5, 46.6, and 230 kPa. In conjunction with the mechanical and cell morphological characterization, we showed that hepatic functions of sodium butyrate differentiated cells were sustained and further enhanced on compliant substrates. This study promises to offer insights into regulating stem cell differentiation via mechanical stimuli, and assist us with designing a variety of dynamic culture systems for applications in tissue and cellular engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8

Similar content being viewed by others

References

  1. Amabile P. G., D. S. Wang, E. Y. Kao, J. Lee, C. J. Elkins, E. Yuksel, P. R. Hilfiker, J. M. Waugh, M. D. Dake. Directed migration of smooth muscle cells to engineer plaque-resistant vein grafts. J. Endovasc. Ther. 12(6):667–675, 2005

    Article  PubMed  Google Scholar 

  2. Chan C., F. Berthiaume, B. D. Nath, A. W. Tilles, M. Toner, M. L. Yarmush. Hepatic tissue engineering for adjunct and temporary liver support: critical technologies. Liver Transpl. 10(11):1331–1342, 2004

    Article  PubMed  Google Scholar 

  3. Dahlke M. H., F. C. Popp, S. Larsen, H. J. Schlitt, J. E. Rasko. Stem cell therapy of the liver—fusion or fiction? Liver Transpl. 10(4):471–479, 2004

    Article  PubMed  Google Scholar 

  4. DiPersio C. M., D. A. Jackson, K. S. Zaret. The extracellular matrix coordinately modulates liver transcription factors and hepatocyte morphology. Mol. Cell Biol. 11(9):4405–4414, 1991

    PubMed  CAS  Google Scholar 

  5. Discher D. E., P. Janmey, Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143, 2005

    Article  PubMed  CAS  Google Scholar 

  6. Engler A., L. Bacakova, C. Newman, A. Hategan, M. Griffin, D. Discher. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86(1 Pt 1):617–628, 2004

    Article  PubMed  CAS  Google Scholar 

  7. Engler A. J., M. A. Griffin, S. Sen, C. G. Bonnemann, H. L. Sweeney, D. E. Discher. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166(6):877–887, 2004

    Article  PubMed  CAS  Google Scholar 

  8. Engler A. J., S. Sen, H. L. Sweeney, D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689, 2006

    Article  PubMed  CAS  Google Scholar 

  9. Flanagan L. A., Y. E. Ju, B. Marg, M. Osterfield, P. A. Janmey. Neurite branching on deformable substrates. Neuroreport 13(18):2411–2415, 2002

    Article  PubMed  Google Scholar 

  10. Georges P. C., P. A. Janmey. Cell type-specific response to growth on soft materials. J. Appl. Physiol. 98(4):1547–1553, 2005

    Article  PubMed  Google Scholar 

  11. Georges P. C., W. J. Miller, D. F. Meaney, E. S. Sawyer, P. A. Janmey. Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys. J. 90(8):3012–3018, 2006

    Article  PubMed  CAS  Google Scholar 

  12. Hamazaki T., Y. Iiboshi, M. Oka, P. J. Papst, A. M. Meacham, L. I. Zon, N. Terada. Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS Lett. 497(1):15–19, 2001

    Article  PubMed  CAS  Google Scholar 

  13. Jiang X., P. C. Georges, B. Li, Y. Du, M. K. Kutzing, M. L. Previtera, N. A. Langrana, B. L. Firestein. Cell growth in response to mechanical stiffness is affected by neuron–astroglia interactions. Open Neurosci. J. 1(1):7–14, 2007

    CAS  Google Scholar 

  14. Lin, D. C., B. Yurke, and N. A. Langrana. Determining the elastic moduli of reversible gels using the theory of elasticity. In: ASME Summer Bioengineering Conference, Key Biscayne, FL, 2003

  15. Lin D. C., B. Yurke, N. A. Langrana. Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel. J. Biomech. Eng. 126(1):104–110, 2004

    Article  PubMed  Google Scholar 

  16. Lin D. C., B. Yurke, N. A. Langrana. Use of rigid spherical inclusions in young’s moduli determination: application to DNA-crosslinked gels. J. Biomech. Eng. 127(4):571–579, 2005

    Article  PubMed  Google Scholar 

  17. Newsome P. N., M. A. Hussain, N. D. Theise. Hepatic oval cells: helping redefine a paradigm in stem cell biology. Curr. Top. Dev. Biol. 61:1–28, 2004

    PubMed  CAS  Google Scholar 

  18. Novik E. I., T. J. Maguire, K. Orlova, R. S. Schloss, M. L. Yarmush. Embryoid body-mediated differentiation of mouse embryonic stem cells along a hepatocyte lineage: insights from gene expression profiles. Tissue Eng. 12(6):1515–1525, 2006

    Article  PubMed  CAS  Google Scholar 

  19. Pelham R. J. Jr., Y. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94(25):13661–13665, 1997

    Article  PubMed  CAS  Google Scholar 

  20. Rambhatla L., C. P. Chiu, P. Kundu, Y. Peng, M. K. Carpenter. Generation of hepatocyte-like cells from human embryonic stem cells. Cell Transplant. 12(1):1–11, 2003

    Article  PubMed  Google Scholar 

  21. Semler E. J., P. A. Lancin, A. Dasgupta, P. V. Moghe. Engineering hepatocellular morphogenesis and function via ligand-presenting hydrogels with graded mechanical compliance. Biotechnol. Bioeng. 89(3):296–307, 2005

    Article  PubMed  CAS  Google Scholar 

  22. Semler E. J., P. V. Moghe. Engineering hepatocyte functional fate through growth factor dynamics: the role of cell morphologic priming. Biotechnol. Bioeng. 75(5):510–520, 2001

    Article  PubMed  CAS  Google Scholar 

  23. Semler E. J., C. S. Ranucci, P. V. Moghe. Mechanochemical manipulation of hepatocyte aggregation can selectively induce or repress liver-specific function. Biotechnol. Bioeng. 69(4):359–369, 2000

    Article  PubMed  CAS  Google Scholar 

  24. Sharma N. S., R. Shikhanovich, R. Schloss, M. L. Yarmush. Sodium butyrate-treated embryonic stem cells yield hepatocyte-like cells expressing a glycolytic phenotype. Biotechnol. Bioeng. 94(6):1053–1063, 2006

    Article  PubMed  CAS  Google Scholar 

  25. Theise N. D. Liver stem cells: prospects for treatment of inherited and acquired liver diseases. Expert Opin. Biol. Ther. 3(3):403–408, 2003

    Article  PubMed  Google Scholar 

  26. Tilles A. W., F. Berthiaume, M. L. Yarmush, R. G. Tompkins, M. Toner. Bioengineering of liver assist devices. J. Hepatobiliary Pancreat. Surg. 9(6):686–696, 2002

    Article  PubMed  Google Scholar 

  27. Tilles A. W., F. Berthiaume, M. L. Yarmush, M. Toner. Critical issues in bioartificial liver development. Technol. Health Care 10(3–4):177–186, 2002

    PubMed  CAS  Google Scholar 

  28. Wang H. B., M. Dembo, Y. L. Wang. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Physiol. Cell Physiol. 279(5):C1345–C1350, 2000

    PubMed  CAS  Google Scholar 

  29. Wang Y. L., R. J. Pelham Jr. Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol. 298:489–496, 1998

    PubMed  CAS  Google Scholar 

  30. Yarmush M. L., M. Toner, J. C. Dunn, A. Rotem, A. Hubel, R. G. Tompkins. Hepatic tissue engineering. Development of critical technologies. Ann. NY Acad. Sci. 665:238–252, 1992

    Article  PubMed  CAS  Google Scholar 

  31. Yeung T., P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, P. A. Janmey. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton. 60(1):24–34, 2005

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH EB-004919. The authors would like to thank Dr. Bernard Yurke and Dr. David Lin for their guidance and expertise inpolyacrylamide gels. The authors would like to thank Mr. Kevin Tang and Ms. DaEun June from the Department of Biomedical Engineering at Rutgers University for their assistance in the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noshir A. Langrana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Sharma, N., Chippada, U. et al. Functional Modulation of ES-Derived Hepatocyte Lineage Cells via Substrate Compliance Alteration. Ann Biomed Eng 36, 865–876 (2008). https://doi.org/10.1007/s10439-008-9458-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9458-3

Keywords

Navigation