Skip to main content
Log in

Methods for Fabrication of Nanoscale Topography for Tissue Engineering Scaffolds

  • Nanobioengineering
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Observations of how controlling the microenvironment of cell cultures can lead to changes in a variety of parameters has lead investigators to begin studying how the nanoenvironment of a culture can affects cells. Cells have many structures at the nanoscale such as filipodia and cytoskeletal and membrane proteins that interact with the environment surrounding them. By using techniques that can control the nanoenvironment presented to a cell, investigators are beginning to be able to mimic the nanoscale topographical features presented to cells by extracellular matrix proteins such as collagen, which has precise and repeating nanotopography. The belief is that these nanoscale surface features are important to creating more natural cell growth and function. A number of techniques are currently being used to create nanoscale topographies for cell scaffolding. These techniques fall into two main categories: techniques that create ordered topographies and those that create unordered topographies. Electron Beam lithography and photolithograpghy are two standard techniques for creating ordered features. Polymer demixing, phase separation, colloidal lithography and chemical etching are most typically used for creating unordered surface patterns. This review will give an overview of these techniques and cite observations from experiments carried out using them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.
FIGURE 10.
FIGURE 11.

Similar content being viewed by others

REFERENCES

  1. Abrams, G. A., S. L. Goodman, P. F. Nealey, M. Franco, and C. J. Murphy. Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Cell Tissue Res. 299:39–46, 2000.

    Article  PubMed  CAS  Google Scholar 

  2. Affrosman, S., G. Henn, S. A. O’Niell, R. A. Pethrick, and M. Stamm. Surface topography and composition of deuterated polystyrene-poly(bromostyrene) blends. Macromolecules 29:5010–5016, 1996.

    Article  Google Scholar 

  3. Affrossman, S., S. A. O’Niell, and M. Stamm. Topography and surface composition of thin films of blends of polystyrene with bromiated polystyrenes: Effects of varying degrees of bomination and annealing. Macromolecules 31:6280–6288, 1998.

    Article  CAS  Google Scholar 

  4. Affrossman, S., and M. Stamm. The effect of molecular weight on the topography of thin films of blends of poly(4-bromostyrene) and polystyrene. Colloid Polym. Sci. 278:888–893, 2000.

    Article  CAS  Google Scholar 

  5. Andersson, A. S., J. Brink, U. Lidberg, and D. S. Sutherland. Influence of systematically varied nanoscale topography on the morphology of epithelial cells. IEEE Trans. Nanobiosc. 2:49–57, 2003.

    Article  Google Scholar 

  6. Bhattarai, S. J., N. Bhattarai, H. K. Yi, P. H. Hwang, D. I. Cha, and H. Y. Kim. Novel biodegradable electrospun membrane: Scaffold for tissue engineering. Biomaterials 25:2595–2602, 2004.

    Article  PubMed  CAS  Google Scholar 

  7. Buttiglieri, S., D. Pasqui, M. Migliori, H. Johnstone, S. Affrossman, L. Sereni, M. L. Wratten, R. Barbucci, C. Tetta, and G. Camussi. Endothelization and adherence of leucocytes to nanostructured surfaces. Biomaterials 24:2731–2738, 2003.

    Article  PubMed  CAS  Google Scholar 

  8. Curtis, A. S. G., B. Casey, J. O. Gallagher, D. Pasqui, M. A. Wood, and C. D. W. Wilkinson. Substratum nanotopography and the adhesion of biological cells. Are symmetry or regularity of nanotopography important? Biophys. Chem. 95:275–283, 2001.

    Article  Google Scholar 

  9. Dalby, M. J., C. C. Berry, M. O. Riehle, D. S. Sutherland, H. Agheli, and A. S. G. Curtis. Attempted endocytosis of nano-environment produced by colloidal lithography by human fibroblasts. Exp. Cell Res. 295:387–394, 2004.

    Article  PubMed  CAS  Google Scholar 

  10. Dalby, M. J., S. Childs, M. O. Riehle, H. J. H. Johnstone, S. Affrossman, and A. S. G. Curtis. Fibroblast reaction to island topography: Changes in cytoskeleton and morphology with time. Biomaterials 24:927–935, 2003.

    Article  PubMed  CAS  Google Scholar 

  11. Dalby, M. J., N. Gadegaard, M. O. Riehle, C. D. W. Wilkinson, and A. S. G. Curtis. Investigating filipodia sensing using arrays of defined nano-pits down to 35 nm diameter in size. Int. J. Biochem. Cell Biol. 36:2005–2015, 2004.

    Article  PubMed  CAS  Google Scholar 

  12. Dalby, M. J., D. Giannaras, M. O. Riehle, N. Gadegaard, S. Affrossman, and A. S. G. Curtis. Rapid fibroblast adhesion to 27 nm high polymer demixed nano-topographies. Biomaterials 25:77–83, 2004.

    Article  PubMed  CAS  Google Scholar 

  13. Dalby, M. J., M. O. Riehle, H. Johnstone, S. Affrossman, and A. S. G. Curtis. In vitro reaction of endothelial cells to polymer demixed nanotopography. Biomaterials 23:2945–2954, 2002.

    Article  PubMed  CAS  Google Scholar 

  14. Dalby, M. J., M. O. Riehle, H. Johnstone, S. Affrossman, and A. S. G. Curtis. Investigating the limits of filopodial sensing: A brief report using SEM to image the interaction between 10 nm high nano-topography and fibroblast filopodia. Cell. Biol. Int. 28:229–236, 2004.

    Article  PubMed  CAS  Google Scholar 

  15. Dalby, M. J., M. O. Riehle, D. S. Sutherland, H. Agheli, and A. S. G. Curtis. Changes in fibroblast morphology in response to nano-columns produced by colloidal lithography. Biomaterials 25:5415–5422, 2004.

    Article  PubMed  CAS  Google Scholar 

  16. Dalby, M. J., M. O. Riehle, D. S. Sutherland, H. Agheli, and A. S. G. Curtis. Use of nanotopography to study mechanotransductoin in fibroblasts—methods and perspectives. Eur. J. Cell. Biol. 83:159–169, 2004.

    Article  PubMed  Google Scholar 

  17. Dalby, M. J., S. J. Yarwood, M. O. Riehle, H. J. H. Johnstone, S. Affrossman, and A. S. G. Curtis. Increasing fibroblast response to materials using nanotopography: Morphological and genetic measurements of cell response to 13-nm-high polymer demixed islands. Exp. Cell Res. 276:1–9, 2002.

    Article  PubMed  CAS  Google Scholar 

  18. Denis, F. A., P. Hanarp, D. S. Suterland, and Y. F. Dufrene. Nanoscale chemical patterns fabricated by using colloidal lithography and self-assembled monolayers. Langmuir 20:9335–9339, 2004.

    Article  PubMed  CAS  Google Scholar 

  19. Desai, T. A.. Micro- and nanoscale structures for tissue engineering constructs. Med. Eng. Phys. 22:595–606, 2000.

    Article  PubMed  CAS  Google Scholar 

  20. Desai, T. A., D. J. Hansford, L. Kulinski, A. H. Nashat, G. Rasi, J. Tu, Y. Wang, M. Zhang, and M. Ferrari. Nanopore technology for biomedical applications. Biomed. Microdevices 2:11–40, 1999.

    Article  CAS  Google Scholar 

  21. Desai, T. A., T. West, M. Cohen, T. Boiarski, and A. Rampersaud. Nanoporous microsystems for islet cell transplantation. Adv. Drug Deliv. Rev. 56:1661–1673, 2004.

    Article  PubMed  CAS  Google Scholar 

  22. Deutsch, J., D. Motlagh, B. Russell, and T. A. Desai. Fabrication of microtextured membranes for cardiac myocyte attachment and orientation. Biomed. Mater. Res. 53:267–275, 2000.

    Article  CAS  Google Scholar 

  23. Dunn, F. A., and J. P. Heath. A new hypothesis of contact guidance in tissue cells. Exp. Cell Res. 101:1–14, 1976.

    Article  PubMed  CAS  Google Scholar 

  24. Fan, Y. W., F. Z. Cui, L. N. Chen, Y. Zhia, Q. Y. Xu, and I.-S. Lee. Adhesion of neural cells on silicon wafer with nano-topographic surface. Appl. Surf. Sci. 187:313–318, 2002.

    Article  CAS  Google Scholar 

  25. Fan, Y. W., F. Z. Cui, S. P. Hou, Q. Y. Xu, L. N. Chen, and I.-S. Lee. Culture of neural cells on silicon wafers with nano-scale surface topograph. J. Neurosci. Methods 120:17–23, 2002.

    Article  PubMed  CAS  Google Scholar 

  26. Fields, G. B., J. L. Lauer, Y. Dori, P. Forns, Y. C. Yu, and M. Tirrell. Protein-like molecular architecture: Biomaterial applications for inducing cellular receptor binding and signal transduction. Biopolymers 47:143–151, 1998.

    Article  PubMed  CAS  Google Scholar 

  27. Folch, A., A. Ayon, O. Hurtado, M. A. Schmidt, and M. Toner. Molding of deep polydimethylsiloxane microstructures for microfluidics and biological applications. J. Biomech. Eng. 121:28–34, 1999.

    PubMed  CAS  Google Scholar 

  28. Frenot, A., and I. S. Chronakis. Polymer nanofibers assembled by electrospinning. Curr. Opin. Colloid Interface Sci. 8:64–75, 2003.

    Article  CAS  Google Scholar 

  29. Fujihara, K., M. Kotaki, and S. Ramakrishna. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials 26:4139–4147, 2005.

    Article  PubMed  CAS  Google Scholar 

  30. Gadegaard, N., S. Thomas, D. S. Macntyre, K. Mcghee, J. Gallagher, B. Casey, and C. D. W. Wilkinson. Arrays of nano-dots for cellular engineering. Microelectron. Eng. 67–68:162–168, 2003.

    Article  CAS  Google Scholar 

  31. Griscom, L., P. Degenaar, B. LePioufle, E. Tamiya, and H. Fujita. Techniques for patterning and guidance of primary culture neurons on micro-electrode arrays. Sens. Actuators B Chem. 83:15–21, 2002.

    Article  Google Scholar 

  32. Gustafson, T., and L. Wolpert. Studies on the cellular basis of morphogenesis in the sea urchin embryo. Exp. Cell Res. 253:288–295, 1999.

    Article  PubMed  CAS  Google Scholar 

  33. Hanarp, P., D. Sutherland, J. Gold, and B. Kasemo. Nanostructured model biomaterial surfaces prepared by colloidal lithography. Nanostruct. Mater. 12:429–432, 1999.

    Article  Google Scholar 

  34. Hanarp, P., D. Sutherland, J. Gold, and B. Kasemo. Control of nanoparticle film structure for colloidal lithography. Colloids Surf. A Physiochem. Eng. Aspects 214:23–36, 2003.

    Article  CAS  Google Scholar 

  35. Hartgerink, J. D., E. Beniash, and S. I. Stupp. Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials. Proc. Natl. Acad. Sci. USA 99:5133–5138, 2002.

    Article  PubMed  CAS  Google Scholar 

  36. Huang, L., R. P. Apkarian, and E. L. Chaikof. High-resolution analysis of engineered type I collagen nanfibers by electron microscopy. Scanning 23(6):372–375, 2001.

    Article  PubMed  CAS  Google Scholar 

  37. Huang, Z. M., Y. Z. Zhang, M. Kotaki, and S. Ramakrishna. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Sci. Technol. 63:2223–2253, 2003.

    Article  CAS  Google Scholar 

  38. Jin, H. J., J. Chen, V. Karageorgiou, G. H. Altman, and D. L. Kaplan. Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials 25:1039–1047, 2004.

    Article  PubMed  CAS  Google Scholar 

  39. Kenawy, E. R., J. M. Layman, J. R. Watkins, G. L. Bowlin, J. A. Matthews, D. G. Simpson, and G. E. Wnek. Electrospinning of poly(ethylene-co-vinyl alcohol) fibers. Biomaterials 24:907–913, 2003.

    Article  PubMed  CAS  Google Scholar 

  40. Klehn, B., S. Skaberna, and U. Kunze. Wet-chemical nanoscale patterning of GaAs surfaces using atomic force microscope lithography. Superlatt. Microstruct. 25:473–476, 1999.

    Article  CAS  Google Scholar 

  41. Leary Swan, E. E., K. C. Popat, and T. A. Desai. Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion. Biomaterials 26:1969–1976, 2005.

    Article  PubMed  CAS  Google Scholar 

  42. Leary Swan, E. E., K. C. Popat, C. A. Grimes, and T. A. Desai. Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture. J. Biomed. Mater. Res. 72A(3):288–295, 2005.

    Article  CAS  Google Scholar 

  43. Leoni, L., and T. Desai. Micromachined biocapsules for cell based sensing and delivery. Adv. Drug Deliv. Rev. 56:211–229, 2004.

    Article  PubMed  CAS  Google Scholar 

  44. MacPhee, C. E., and D. N. Woolfoson. Engineered and designed peoptide-based fibrous biomaterials. Curr. Opin. Solid State Mater. Sci. 8:141–149, 2004.

    Article  CAS  Google Scholar 

  45. Madou, M. J. Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed. Boca Raton: CRC Press LLC, 2002, 723 p.

  46. Marsh, G. Moore's law at the extremes. Mater. Today 6:28–33, 2003.

    Article  CAS  Google Scholar 

  47. Matthews, J. A., G. E. Wnek, D. G. Simpson, and G. L. Bowlin. Electrospinning of collagen nanofibers. Biomacromolecules 3(2):232–238, 2002.

    Article  PubMed  CAS  Google Scholar 

  48. Min, B. M., G. Lee, S. H. Kim, Y. S. Nam, T. S. Lee, and W. H. Park. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25:1289–1297, 2004.

    Article  PubMed  CAS  Google Scholar 

  49. Min, B. M., Y. You, J. M. Kim, S. J. Lee, and W. H. Park. Formation of nanostructured poly(lactic-co-glycolic acid)/chitin matrix and its cellular response to normal human keratinocytes and fibroblasts. Carbohydr. Polym. 57:285–292, 2004.

    Article  CAS  Google Scholar 

  50. Moldovan, N. I., and M. Ferrari. Prospects for microtechnology and nanotechnology in bioengineering of replacement microvessels. Arch. Pathol. Lab. Med. 126:320–324, 2002.

    PubMed  Google Scholar 

  51. Moldovan, N. I., P. J. Goldschmidt-Clermont, J. Parker-Thornburg, S. D. Shapiro, and P. E. Kolattukudy. Contribution of monocytes/macrophages to compensatory neovascularization: The drilling of metalloelastase-positive tunnels in ischemic myocardium. Circ. Res. 87:378–384, 2000.

    PubMed  CAS  Google Scholar 

  52. Motlagh, D., S. E. Senyo, T. A. Desai, and B. Russell. Microtextured substrata alter gene expression, protein localization and the shape of cardiac myocytes. Biomaterials 24:2463–2476, 2003.

    Article  PubMed  CAS  Google Scholar 

  53. Norman, J. J., and T. A. Desai. Control of cellular organization three-dimensions using a microfabricated PDMS-collagen composite tissue scaffold. Tissue Eng 11:378–386, 2005.

    Google Scholar 

  54. Pattison, M. A., S. Wurster, T. J. Webster, and K. M. Haberstroh. Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials 26:2491–2500, 2005.

    Google Scholar 

  55. Popat, K. C., E. E. Leary Swan, V. Mukhatyar, K. I. Chatvanichkul, G. K. Mor, C. A. Grimes, and T. A. Desai. Influence of nanoporous alumina membranes on long-term osteoblast response. Biomaterials 26(22):4516–4522, 2005.

    Google Scholar 

  56. Riehle, M. O., M. J. Dalby, H. Johnstone, A. MacIntosh, and S. Affrossman. Cell behavior of rat calvaria bone cells on surfaces with random nanometric features. Mater. Sci. Eng. C 23:337–340, 2003.

    Article  Google Scholar 

  57. Ruoslahti, E., and M. D. Pierschbacher. Arg-Gly-Asp: A versatile cell recognition signal. Cell 44:517–518, 1986

    Article  PubMed  CAS  Google Scholar 

  58. Sarantopoulou, E., Z. Kollia, K. Kocevar, I. Musevic, S. Kobe, G. Drazic, E. Gogolides, P. Argitis, and A. C. Cefalas. The challenges of 157 nm nanolithography: Surface morphology of silicon-based copolymers. Mater. Sci. Eng. C 23:995–999, 2003

    Article  CAS  Google Scholar 

  59. Kidoaki, S., I. K. Kwon, and T. Matsuda. Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials 26:37–46, 2005.

    Article  PubMed  CAS  Google Scholar 

  60. Shields, K. J., M. J. Beckman, G. L. Bowlin, and J. S. Wayne. Mechanical properties and cellular proliferation of electrospun collagen type II. Tissue Eng. 10(9–10):1510–1517, 2004.

    PubMed  CAS  Google Scholar 

  61. Shin, M., O. Ishii, T. Sueda, and J. P. Vacanti. Contractile cardiac grafts using a novel nanofibrous mesh. Biomaterials 25:3717–3723, 2004.

    Article  PubMed  CAS  Google Scholar 

  62. Silver, F. H., and D. L. Christiansen. Biomaterials Science and Biocompatibility. New York: Springer-Verlag, 1999.

    Google Scholar 

  63. Singhvi, R., G. Stephanopoulos, and D. I. C. Wang. Review: Effects of substratum morphology on cell physiology. Biotechnol. Bioeng. 43:764–771, 1994.

    Article  Google Scholar 

  64. Smith, L. A., and P. X. Ma. Nano-fibrous scaffolds for tissue engineering. Colloids Surf. B 39:125–131, 2004.

    CAS  Google Scholar 

  65. Sung, I. A., D. E. Kim. Nano-scale patterning by mechano-chemical scanning probe lithography. Appl. Surf. Sci. 239:209–221, 2005.

    Article  CAS  Google Scholar 

  66. Thapa, A., D. C. Miller, T. J. Webster, K. M. Haberstroh. Nano-structured polymers enhance bladder smooth muscle cell function. Biomaterials 24:2915–2926, 2003.

    Article  PubMed  CAS  Google Scholar 

  67. Tu, R. S., and M. Tirrell. Bottom-up design of biomimetic assemblies. Adv. Drug Deliv. Rev. 56:1537–1563, 2004.

    Article  PubMed  CAS  Google Scholar 

  68. Vieu, C., F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois. Electron beam lithography: Resolution limits and applications. Appl. Surf. Sci.. 164:111–117, 2000.

    Article  CAS  Google Scholar 

  69. Wei, G., and P. X. Ma. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25:4749–4757, 2004.

    Article  PubMed  CAS  Google Scholar 

  70. Wendel, M., B. Irmer, J. Cortes, R. Kaiser, H. Lorenz, J. P. Kotthaus, and A. Lorke. Nanolithography with an atomic force microscope. Superlatt. Microstruct. 20:349–356, 1996.

    Article  CAS  Google Scholar 

  71. Wood, M. A., M. Riehle, and C. D. W. Wilkinson. Patterning colloidal nanotopographies. Nanotechnology 13:605–609, 2002.

    Article  CAS  Google Scholar 

  72. Xu, C. Y., R. Inai, M. Kotaki, and S. Ramakrishna. Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering. Biomaterials 25:877–886, 2004.

    Article  PubMed  CAS  Google Scholar 

  73. Yang, F., R. Murugan, S. Ramakrishna, X. Wang, Y. X. Ma, and S. Wang. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 25:1891–1900, 2004.

    Article  PubMed  CAS  Google Scholar 

  74. Yang, F., R. Murugan, S. Wang, and S. Ramakrishna. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603–2610, 2005.

    Google Scholar 

  75. Yasuhiko, T. Recent progress in tissue engineering. Drug Discov. Today 6:483–487, 2001.

    Article  PubMed  Google Scholar 

  76. Zong, X., H. Bien, C. Y. Chung, L. Yin, D. Fang, B. S. Hsiao, B. Chu, and E. Entcheva. Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 26:5330–5338, 2005.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge the financial support of National Heart, Lung, and Blood Institute Grant NIH (64956) and Johnson & Johnson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Norman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norman, J.J., Desai, T.A. Methods for Fabrication of Nanoscale Topography for Tissue Engineering Scaffolds. Ann Biomed Eng 34, 89–101 (2006). https://doi.org/10.1007/s10439-005-9005-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-9005-4

Keywords

Navigation