Skip to main content
Log in

Diffusivity and Solubility of Nitric Oxide in Water and Saline

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Aqueous diffusivities and solubilities of NO were determined by using a chemiluminescence detector to measure time-dependent fluxes across stagnant liquid films confined between polydimethylsiloxane membranes. The NO diffusivities in pure water and PBS at 25C were found to be (2.21 ± 0.02) × 10−5 cm2 s−1 and (2.21 ± 0.04) × 10−5 cm2 s−1, respectively. Although lower than most previous values for NO at room temperature, these diffusivities are very similar to those for O2, as one would expect. Extrapolation to 37°C yielded a value of 3.0 × 10−5 cm2 s−1. The solubility of NO in water at 25°C was (1.94 ± 0.03) × 10−6 mol cm−3 atm−1, in agreement with the literature. This agreement, along with the excellent fits obtained to the transient flux data (<4% rms error in each experiment), supports the validity of the simultaneously measured diffusivity. The solubility of NO in PBS at 25°C was (1.75 ± 0.02) × 10−6 mol cm−3 atm−1. The modest (10%) reduction in solubility relative to that in pure water is consistent with the usual effects of salts on gas solubilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armor, J. N. Influence of pH and ionic-strength upon solubility of NO in aqueous solution. J. Chem. Eng. Data. 19:82–84, 1974.

    Google Scholar 

  2. Barrie, J. A., and D. Machin. The sorption and diffusion of water in silicone rubbers. Part II. Filled rubbers. J. Macromol. Sci. Phys. 4:673–692, 1969.

    Google Scholar 

  3. Butler, A. R., I. L. Megson, and P. G. Wright. Diffusion of nitric oxide and scavenging by blood in the vasculature. Biochim. Biophys. Acta. 1425:168–76, 1998.

    Google Scholar 

  4. Chen, B., M. Keshive, and W. M. Deen. Diffusion and reaction of nitric oxide in suspension cell cultures. Biophys. J. 75:745–754, 1998.

    Article  Google Scholar 

  5. Chen, B., and W. M. Deen. Analysis of the effects of cell spacing and liquid depth on nitric oxide and its oxidation products in cell cultures. Chem. Res. Toxicol. 14:135–147, 2001.

    Article  Google Scholar 

  6. Chen, B., and W. M. Deen. Effect of liquid depth on the synthesis and oxidation of nitric oxide in macrophage cultures. Chem. Res. Toxicol. 15:490–496, 2002.

    Article  Google Scholar 

  7. Dean, J. A. (ed.) Lange’s Handbook of Chemistry, 15th ed. New York: McGraw-Hill, 1999, p. 5.7.

    Google Scholar 

  8. Denicola, A., J. M. Souza, R. Radi, and E. Lissi. Nitric oxide diffusion in membranes determined by fluorescence quenching. Arch. Biochem. Biophys. 328:208–12, 1996.

    Article  Google Scholar 

  9. Goldstick, T. K., and I. Fatt. Diffusion of oxygen in solutions of blood proteins. Chem. Eng. Prog. Symp. Ser. 66:101–113, 1970.

    Google Scholar 

  10. Gros, G., W. Moll, H. Hoppe, and H. Gros. Proton transport by phosphate diffusion—a mechanism of facilitated CO2 transfer. J. Gen. Physiol. 67:773–790, 1976.

    Article  Google Scholar 

  11. Hermann, C., I. Dewes, and A. Schumpe. The estimation of gas solubilities in salt solutions. Chem. Eng. Sci. 50:1673–1675, 1995.

    Article  Google Scholar 

  12. Himmelblau, D. M. Diffusion of dissolved gases in liquids. Chem. Rev. 64:527–550, 1964.

    Google Scholar 

  13. Ho, C. S., L. K. Ju, R. F. Baddour, and D. I. C. Wang. Simultaneous measurement of oxygen diffusion coefficients and solubilities in electrolyte solutions with a polarographic oxygen electrode. Chem. Eng. Sci. 43:3093–3107, 1988.

    Article  Google Scholar 

  14. Jordan, J., E. Ackerman, and R. L. Berger. Polarographic diffusion coefficients of oxygen defined by activity gradients in viscous media. J. Am. Chem. Soc. 78:2979–2983, 1956.

    Google Scholar 

  15. Jordan, J., and W. E. Bauer. Correlations between solvent structure, viscosity and polarographic diffusion coefficients of oxygen. J. Am. Chem. Soc. 81:3915–3919, 1959.

    Google Scholar 

  16. Lamers-Lemmers, J., L. J. C. Hoofd, and B. Oeseburg. Non-steady-state O2 diffusion in metmyoglobin solutions studied in a diffusion chamber. Biochem. Biophys. Res. Commun. 276:773–778, 2000.

    Article  Google Scholar 

  17. Lancaster, J. R., Jr. Diffusion of free nitric oxide. Methods Enzymol. 268:31–50, 1996.

    Article  MathSciNet  Google Scholar 

  18. Lewis, R. S., W. M. Deen, S. R. Tannenbaum, and J. S. Wishnok. Membrane mass spectrometer inlet for quantitation of nitric oxide. Biol. Mass. Spectrom. 22:45–52, 1993.

    Google Scholar 

  19. Lewis, R. S., and W. M. Deen. Kinetics of the reaction of nitric oxide with oxygen in aqueous solutions. Chem. Res. Toxicol. 7:568–574, 1994.

    Google Scholar 

  20. Lide, D. R. (ed.) Handbook of Chemistry and Physics, 71st edn., Boca Raton: CRC Press, 1990–1991, p. 6–151.

    Google Scholar 

  21. Massey, L. K. Permeability Properties of Plastics and Elastomers—A Guide to Packaging and Barrier Materials, 2nd edn. Norwich: William Andrew Publishing/Plastics Design Library, 2003, Ch. 87.

    Google Scholar 

  22. Meldon, J. H. Reaction-Enhanced Mass Transfer in Thin Liquid Films, Sc. D. thesis, Mass. Inst. Of Tech., Cambridge, 1973.

  23. Meldon, J. H., K. A. Smith, and C. K. Colton. Effect of weak acids upon transport of carbon dioxide in alkaline solutions. Chem. Eng. Sci. 32:939–950, 1977.

    Article  Google Scholar 

  24. Nalwaya, N., and W. M. Deen. Analysis of cellular exposure to peroxynitrite in suspension cultures. Chem. Res. Toxicol. 16:920–32, 2003.

    Google Scholar 

  25. Nguyen, Q. T., Z. Bendjama, R. Clement, and Z. H. Ping. Poly(dimethylsiloxane) crosslinked in different conditions—Part II. Pervaporation of water-ethyl acetate mixtures. Phys. Chem. Chem. Phys. 2:395–400, 2000.

    Article  Google Scholar 

  26. Reid, R. C., J. M. Prausnitz, and B. E. Poling. The Properties of Gases and Liquids, 4th ed. New York: McGraw-Hill, 1987, pp. 598–604.

    Google Scholar 

  27. Robb, W. L. Thin silicone membranes–Their permeation properties and some applications. Ann. N. Y. Acad. Sci. 146:138–147, 1968.

    Google Scholar 

  28. Sendroy, J., R. T. Dillon, and D. D. Van Slyke. Studies of gas and electrolyte equilibria in blood. XIX. The solubility and physical state of uncombined oxygen in blood. J. Biol. Chem. 105:597–632, 1934.

    Google Scholar 

  29. Shaw, A. W., and A. J. Vosper. Solubility of nitric oxide in aqueous and non-aqueous solvents. J. Chem. Soc. Faraday Trans. I. 73:1239–1244, 1977.

    Article  Google Scholar 

  30. Stamler, J. S., D. I. Simon, J. A. Osborne, M. E. Mullins, O. Jaraki, T. Michel, D. J. Singel, and J. Loscalzo. S-Nitrosylation of proteins with nitric oxide—synthesis and characterization of biologically-active compounds. Proc. Natl. Acad. Sci. U.S.A. 89:444–448, 1992.

    Google Scholar 

  31. Stroeve, P. Diffusion with Reversible Chemical Reaction in Heterogeneous Media, Sc.D. thesis, Mass. Inst. of Tech., Cambridge, 1973.

  32. Stroeve, P., C. K. Colton, and K. A. Smith. Steady-state diffusion of oxygen in red blood cell and model suspensions. AIChE J. 22:1133–1142, 1976.

    Article  Google Scholar 

  33. Stroeve, P., and E. Ziegler. The transport of carbon dioxide in high molecular-weight buffer solutions. Chem. Eng. Commun. 6:81–103, 1980.

    Google Scholar 

  34. Vanderkooi, J. M., W. W. Wright, and M. Erecinska. Nitric oxide diffusion coefficients in solutions, proteins and membranes determined by phosphorescence. Biochim. Biophys. Acta. 1207:249–54, 1994.

    Google Scholar 

  35. Vaughn, M. W., L. Kuo, and J. C. Liao. Estimation of nitric oxide production and reaction rates in tissue by use of a mathematical model. Am. J. Physiol. 274:H2163–76, 1998.

    Google Scholar 

  36. Wang, C., and W. M. Deen. Nitric oxide delivery system for cell culture studies. Ann. Biomed. Eng. 31:65–79, 2003.

    Article  Google Scholar 

  37. Ward, W. J. Analytical and experimental studies of facilitated transport. AIChE J. 16:405–410, 1970.

    Article  Google Scholar 

  38. Wise, D. L., and G. Houghton. Diffusion coefficients of neon, krypton, xenon, carbon monoxide and nitric oxide in water at 10–60C. Chem. Eng. Sci. 23:1211–1216, 1968.

    Article  Google Scholar 

  39. Wood, J., and J. Garthwaite. Models of the diffusional spread of nitric oxide: Implications for neural nitric oxide signaling and its pharmacological properties. Neuropharmacology. 33:1235–1244, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian G. Zacharia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zacharia, I.G., Deen, W.M. Diffusivity and Solubility of Nitric Oxide in Water and Saline. Ann Biomed Eng 33, 214–222 (2005). https://doi.org/10.1007/s10439-005-8980-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-8980-9

Keywords

Navigation