Skip to main content
Log in

Measurement of pressure drop and flow resistance in microchannels with integrated micropillars

  • Original Article
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In the present study, we investigate single phase fluid flow through microchannels with integrated micropillars to calculate the pressure drop and flow resistance. The microchannels, which contain micropillars arranged in square and staggered arrangement, are fabricated in silicon substrate using standard photolithography and deep reactive ion etching (DRIE) techniques. The DRIE technique results in precise and accurate fabrication with smooth and vertical wall profiles. Pressure drop measurements are performed on microchannels with integrated micropillars under creeping flow regime over a range of water flow rates from 50 to 600 μl/min. It is observed that the pressure drop varies linearly with increasing flow rates. Flow resistance (\(\Updelta P/Q\) ) is calculated using the pressure drop values and is found to be decreasing as the Darcy number (\(\sqrt{K/h^2}\)) increases. In general, the square arrangement of pillars offers higher resistance to flow than their staggered counterparts. It is observed that the existing theoretical models fail to accurately predict the permeability of the microchannel with integrated micro-pillars, particularly for cases where the micropillars have smooth and accurate geometric conformity, as obtained in the microfabricated structures used in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akbari M, Sinton D, Bahrami M (2009) Pressure drop in rectangular microchannels as compared with theory based on arbitrary cross section. J Fluids Eng Trans ASME 131(4):0412021–0412028

    Google Scholar 

  • Bazylak A, Berejnov V, Markicevic B, Sinton D, Djilali N (2008) Numerical and microfluidic pore networks: towards designs for directed water transport in GDLs. Electrochim Acta 53(26):7630–7637

    Article  Google Scholar 

  • Bera B, Gunda NSK, Mitra SK, Vick D (2012) Characterization of nanometer-scale porosity in reservoir carbonate rock by focused ion beam-scanning electron microscopy. Microsc Microanal 18(1):171–178

    Article  Google Scholar 

  • Berejnov V, Djilali N, Sinton D (2008) Lab-on-chip methodologies for the study of transport in porous media: energy applications. Lab Chip 8(5):689–693

    Article  Google Scholar 

  • Xia Y, Whitesides GM (1998) Soft lithography. Ann Rev Mater Sci 28(1):153–184

    Article  Google Scholar 

  • van Doormaal M, Pharoah J (2009) Determination of permeability in fibrous porous media using the lattice boltzmann method with application to PEM fuel cells. Int J Numer Methods Fluids 59(1):75–89

    Article  MATH  Google Scholar 

  • Drummond JE, Tahirs MI (1984) Laminar viscous flow through regular arrays of parallel solid cylinders. Int J Multiph Flow 10(5):515–540

    Article  MATH  Google Scholar 

  • Firdaouss M, Duplessis J (2004) On the prediction of darcy permeability in nonisotropic periodic two-dimensional porous media. J Porous Media 7(2):119–131

    Article  MATH  Google Scholar 

  • Gunda NSK, Bera B, Karadimitriou N, Mitra SK, Hassanizadeh S (2011a) Reservoir-on-a-chip (ROC): a new paradigm in reservoir engineering. Lab Chip 11(22):3785–3792

    Article  Google Scholar 

  • Gunda NSK, Choi HW, Berson A, Kenney B, Karan K, Pharoah J, Mitra SK (2011b) Focused ion beam-scanning electron microscopy on solid-oxide fuel-cell electrode: Image analysis and computing effective transport properties. J Power Sources 196(7):3592–3603

    Article  Google Scholar 

  • Happel J (1959) Viscous flow relative to arrays of cylinders. AIChE J 5(2):174–177

    Article  Google Scholar 

  • Hasimoto H (1959) On the periodic fundamental solutions of the stokes equations and their application to viscous flow past a cubic array of spheres. J Fluid Mech 5(2):317–328

    Article  MathSciNet  MATH  Google Scholar 

  • Higdon JJL, Ford GD (1996) Permeability of three-dimensional models of fibrous porous media. J Fluid Mech 308:341–361

    Article  MATH  Google Scholar 

  • Jaganathan S, Tafreshi H, Pourdeyhimi B (2008a) A case study of realistic two-scale modeling of water permeability in fibrous media. Sep Sci Technol 43(8):1901–1916

    Article  Google Scholar 

  • Jaganathan S, Vahedi Tafreshi H, Pourdeyhimi B (2008b) A realistic approach for modeling permeability of fibrous media: 3-d imaging coupled with cfd simulation. Chem Eng Sci 63(1):244–252

    Article  Google Scholar 

  • Kaviany M (1995) Principles of heat transfer in porous media, 2nd edn. Springer, Berlin

  • Kosar A, Mishra C, Peles Y (2005) Laminar flow across a bank of low aspect ratio micro pin fins. J Fluids Eng Transa ASME 127(3):419–430

    Article  Google Scholar 

  • Kuwabara K, Ogino M, Ando T, Miyauchi A (2008) Enhancement of fluorescence intensity from an immunoassay chip using high-aspect-ratio nanopillars fabricated by nanoimprinting. Appl Phys Lett 93(3)

  • Kuwabara S (1959) The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small reynolds numbers. J Phys Soc Japan 14(4):527–532

    Article  MathSciNet  Google Scholar 

  • Losey MW, Jackman RJ, Firebaugh SL, Schmidt MA, Jensen KF (2002) Design and fabrication of microfluidic devices for multiphase mixing and reaction. J Microelectromech Syst 11(6):709–717

    Article  Google Scholar 

  • Mathur A, Roy SS, Tweedie M, Mukhopadhyay S, Mitra SK, McLaughlin J (2009) Characterisation of pmma microfluidic channels and devices fabricated by hot embossing and sealed by direct bonding. Curr Appl Phys 9(6):1199–1202

    Article  Google Scholar 

  • Morren G, Bottiglieri M, Bossuyt S, Sol H, Lecompte D, Verleye B, Lomov S (2009) A reference specimen for permeability measurements of fibrous reinforcements for RTM. Compos Part A Appl Sci Manuf 40(3):244–250

    Article  Google Scholar 

  • Muskat M (1945) The production histories of oil producing gas-drive reservoirs. J Appl Phys 16(3):147–159

    Article  Google Scholar 

  • Nabovati A, Llewellin E, Sousa A (2009) A general model for the permeability of fibrous porous media based on fluid flow simulations using the Lattice Boltzmann Method.Compos Part A Appl Sci Manuf 40(6–7):860–869

    Article  Google Scholar 

  • Nam J, Kaviany M (2003) Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium. Int J Heat Mass Transf 46(24):4595–4611

    Article  Google Scholar 

  • Ochoa-Tapia J, Whitaker S (1995) Momentum transfer at the boundary between a porous medium and a homogeneous fluid-I. Theoretical development. Int J Heat Mass Transf 38(14):2635–2646

    Article  MATH  Google Scholar 

  • Ogata H, Amano K (2006) A fundamental solution method for three-dimensional viscous flow problems with obstacles in a periodic array. J Comput Appl Math 193(1):302–318

    Article  MathSciNet  MATH  Google Scholar 

  • Pant LM, Mitra SK, Secanell M (2012) Absolute permeability and Knudsen diffusivity measurements in PEMFC gas diffusion layers and micro porous layers. J Power Sources 206(1):153–160

    Article  Google Scholar 

  • Peles Y, Koar A, Mishra C, Kuo CJ, Schneider B (2005) Forced convective heat transfer across a pin fin micro heat sink. Int J Heat Mass Transf 48(17):3615–3627

    Article  MATH  Google Scholar 

  • Prasanna M, Ha H, Cho E, Hong SA, Oh IH (2004) Influence of cathode gas diffusion media on the performance of the PEMFC. J Power Sources 131(1–2):147–154

    Article  Google Scholar 

  • Rensink D, Roth J, Fell S (2008) Liquid water transport and distribution in fibrous porous media and gas channels. Part B, pp 1271–1277

  • Sangani AS, Acrivos A (1982) Slow flow past periodic arrays of cylinders with application to heat transfer. Int J Multiph Flow 8(3):193–206

    Article  MATH  Google Scholar 

  • Sen D, Nobes DN, Mitra SK (2012) Optical measurement of pore scale velocity field inside microporous media. Microfluid Nanofluid 12(1–4):189–200

    Article  Google Scholar 

  • Tamayol A, Bahrami M (2011a) In-plane gas permeability of proton exchange membrane fuel cell gas diffusion layers. J Power Sources 196(7):3559–3564

    Article  Google Scholar 

  • Tamayol A, Bahrami M (2011b) Transverse permeability of fibrous porous media. Phys Rev E Stat Nonlinear Soft Matter Phys 83(4)

  • Tamayol A, Bahrami M (2011c) Water permeation through gas diffusion layers of proton exchange membrane fuel cells. J Power Sources 196(15):6356–6361

    Article  Google Scholar 

  • Tamayol A, Khosla A, Gray B, Bahrami M (2012a) Creeping flow through ordered arrays of micro-cylinders embedded in a rectangular minichannel. Int J Heat Mass Transf 55(15–16):3900–3908

    Article  Google Scholar 

  • Tamayol A, McGregor F, Bahrami M (2012b) Single phase through-plane permeability of carbon paper gas diffusion layers. J Power Sources 204:94–99

    Article  Google Scholar 

  • Tamayol A, Wong K, Bahrami M (2012c) Effects of microstructure on flow properties of fibrous porous media at moderate Reynolds number. Phys Rev E Stat Nonlinear Soft Matter Phys 85(2):0263181–0263187

    Google Scholar 

  • Tamayol A, Gunda NSK, Akbari M, Mitra SK, Bahrami M (2012) Creeping flow through microchannels with integrated micro-pillars. In: Proceedings of the ASME2012 10th international conference on nanochannels, microchannels, and minichannels, ICNMM2012 July 8–12, 2012, Puerto Rico, USA

  • Tomadakis MM, Sotirchos SV (1993) Transport properties of random arrays of freely overlapping cylinders with various orientation distributions. J Chem Phys 98(1):616–626

    Article  Google Scholar 

  • Tsakiroglou C, Avraam D (2002) Fabrication of a new class of porous media models for visualization studies of multiphase flow processes. J Mater Sci 37(2):353–363

    Article  Google Scholar 

  • Vallabh R, Banks-Lee P, Seyam AF (2010) New approach for determining tortuosity in fibrous porous media. J Eng Fibers Fabr 5(3):7–15

    Google Scholar 

  • Vanapalli S, Ter Brake H, Jansen H, Burger J, Holland H, Veenstra T, Elwenspoek M (2007) Pressure drop of laminar gas flows in a microchannel containing various pillar matrices. J Micromech Microeng 17(7):1381–1386

    Article  Google Scholar 

  • Van der Westhuizen J, Du Plessis JP (1996) An attempt to quantify fibre bed permeability utilizing the phase average Navier–Stokes equation. Compos Part A Appl Sci Manuf 27(4):263–269

    Article  Google Scholar 

  • Wan J, Wilson J (1994) Colloid transport in unsaturated porous media. Water Resour Res 30(4):857–864

    Article  Google Scholar 

  • Wen H, Bambhania HM, Calabrese Barton S (2012) Carbon nanotube-modified biocatalytic microelectrodes with multiscale porosity. J Appl Electrochem 42(3):145–151

    Article  Google Scholar 

  • Williams MV, Begg E, Bonville L, Kunz HR, Fenton JM (2004) Characterization of gas diffusion layers for PEMFC. J Electrochem Soc 151(8):A1173–A1180

    Article  Google Scholar 

  • Wolf F, Santos L, Philippi P (2008) Micro-hydrodynamics of immiscible displacement inside two-dimensional porous media. Microfluid Nanofluid 4(4):307–319

    Article  Google Scholar 

  • Yazdchi K, Srivastava S, Luding S (2011) Microstructural effects on the permeability of periodic fibrous porous media. Int J Multiph Flow 37(8):956–966

    Article  Google Scholar 

  • Yeom J, Agonafer D, Han JH, Shannon M (2009) Low reynolds number flow across an array of cylindrical microposts in a microchannel and figure-of-merit analysis of micropost-filled microreactors. J Micromech Microeng 19(6)

  • Yoon YK, Park JH, Cros F, Allen M (2003) Integrated vertical screen microfilter system using inclined SU-8 structures, pp 227–230

  • Zhou F, Kuentzer N, Simacek P, Advani S, Walsh S (2006) Analytic characterization of the permeability of dual-scale fibrous porous media. Compos Sci Technol 66(15):2795–2803

    Article  Google Scholar 

  • Zhou L, Ding F, Chen H, Ding W, Zhang W, Chou S (2012) Enhancement of immunoassay’s fluorescence and detection sensitivity using three-dimensional plasmonic nano-antenna-dots array. Anal Chem 84(10):4489–4495

    Article  Google Scholar 

Download references

Acknowledgments

Financial support of Natural Sciences and Engineering Research Council (NSERC) of Canada is gratefully acknowledged. N.S.K.G. thanks Alberta Innovates-Technology Futures scholarship. A.T. and M.A. acknowledge NSERC postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushanta K. Mitra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemantary Material 1 (PDF 102 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunda, N.S.K., Joseph, J., Tamayol, A. et al. Measurement of pressure drop and flow resistance in microchannels with integrated micropillars. Microfluid Nanofluid 14, 711–721 (2013). https://doi.org/10.1007/s10404-012-1089-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-1089-1

Keywords

Navigation