Skip to main content
Log in

A modified microfluidic chip for fabrication of paclitaxel-loaded poly(l-lactic acid) microspheres

  • Original Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this article, we present a simple PDMS surface modification method based on poly(vinyl alcohol)/glycerol (PVA/Gly) solution immersion, self-assembled absorption, and heat treatment. The results of contact angle and ATR-FTIR demonstrate the superhydrophilic surface in modified PDMS. It can allow for the stable production of monodisperse droplet in a highly reproducible manner. In addition, we demonstrate the fabrication of monodisperse paclitaxel (PTX) loaded poly(l-lactic acid) (PLLA) microspheres on this kind of modification chip with solvent evaporation. The PLLA microspheres can be adjusted to a range of different sizes depending on the system flow rate. Determination of microsphere size is carried out by optical microscopy and image analysis to reveal less than 4% variation in microsphere size. Compared with the results of published papers, the presented data demonstrate that PTX-loaded PLLA microspheres show good physical properties (spherical and discrete), high-drug loading, encapsulation efficiency, a small initial burst, and sustained-release behavior due to outstanding monodispersity. With the characteristic to prepare high-quality, monodisperse, biodegradable microspheres, the versatile and simple microfluidic method facilitates the development of more reliable and reproducible drug delivery systems, which have great potential to benefit pharmaceutical and biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barratt G (2003) Colloidal drug carriers: achievements and perspectives. Cell Mol Life Sci 60:21–37

    Article  Google Scholar 

  • Dendukuri D, Doyle PS (2009) The synthesis and assembly of polymeric microparticles using microfluidics. Adv Mater 21:1–16

    Article  Google Scholar 

  • Freiberg S, Zhu X (2004) Polymer microspheres for controlled drug release. Int J Pharm 282:1–18

    Article  Google Scholar 

  • Gong XQ, Peng SL, Wen WJ, Shen P, Li WH (2009) Design and fabrication of magnetically functionalized core/shell microspheres for smart drug delivery. Adv Funct Mater 19:292–297

    Article  Google Scholar 

  • Huang SH, Khoo HS, ChienChang SH, Tseng FG (2008) Synthesis of bio-functionalized copolymer particles bearing carboxyl groups via a microfluidic device. Microfluid Nanofluid 5:459–468

    Article  Google Scholar 

  • Huang KS, Lu K, Yeh CS, Chung SR, Lin CH, Yang CH, Dong YS (2009) Microfluidic controlling monodisperse microdroplet for 5-fluorouracil loaded genipin-gelatin microcapsules. J Control Release 137:15–19

    Article  Google Scholar 

  • Hung LH, The SY, Jester J, Lee AP (2010) PLGA micro/nanosphere synthesis by droplet microfluidic solvent evaporation and extraction approaches. Lab Chip 10:1820–1825

    Article  Google Scholar 

  • Kang YQ, Wu J, Yin GF, Huang ZB, Liao XM, Yao YD, Ouyang P, Wang HJ, Yang Q (2008) Characterization and biological evaluation of paclitaxel-loaded poly(l-lactic acid) microparticles prepared by supercritical CO2. Langmuir 24:7432–7441

    Article  Google Scholar 

  • Kim DK, Dobson J (2009) Nanomedicine for targeted drug delivery. J Mater Chem 19:6294–6307

    Article  Google Scholar 

  • Kim J, Chaudhury MK, Owen MJ, Orbeck T (2001) The mechanisms of hydrophobic recovery of polydimethylsiloxane elastomers exposed to partial electrical discharges. J Colloid Interface Sci 244:200–207

    Article  Google Scholar 

  • Kim JW, Utada AS, Fernandez-Nieves A, Hu ZB, Weitz DA (2007) Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. Angew Chem Int Ed 46:1819–1822

    Article  Google Scholar 

  • Kozlov M, Quarmyne M, Chen W, MaCarthy TJ (2003) Adsorption of poly (vinyl alcohol) onto hydrophobic substrates. A general approach for hydrophilizing and chemically activating surface. Macromolecules 36:6054–6059

    Article  Google Scholar 

  • Lam CNC, Kim N, Hui D, Kwok DY, Hair ML, Neumann AW (2001) The effect of liquid properties to contact angle hysteresis. Colloids Surf A 189:265–278

    Article  Google Scholar 

  • Lassalle V, Ferreira ML (2007) PLA nano- and microparticles for drug delivery: an overview of the methods of preparation. Macromol Biosci 7:767–783

    Article  Google Scholar 

  • Lee LY, Wang CH, Smith KA (2008) Supercritical antisolvent production of biodegradable micro- and nanoparticles for controlled delivery of paclitaxel. J Control Release 125:96–106

    Article  Google Scholar 

  • Lensen D, Breukelen KV, Vriezema DM, Hest JCMV (2010) Preparation of biodegradable liquid core PLLA microcapsules and hollow PLLA microcapsules using microfluidics. Macromol Biosci 10:475–480

    Google Scholar 

  • Liang SM, Huang QR, Liu LS, Yam KL (2009) Microstructure and molecular interaction in glycerol plasticized chitosan/poly(vinylalcohol) blending films. Macromol Chem Phys 210:832–839

    Article  Google Scholar 

  • Liggins RT, Burt HM (2001) Paclitaxel loaded poly(l-lactic acid) microspheres: properties of microspheres made with low molecular weight polymers. Int J Pharm 222:19–33

    Article  Google Scholar 

  • Liggins RT, Burt HM (2004) Paclitaxel-loaded poly(l-lactic acid) microspheres 3: blending low and high molecular weight polymers to control morphology and drug release. Int J Pharm 282:61–71

    Article  Google Scholar 

  • Liggins RT, D’Amours S, Demetrick JS, Machan LS, Burt HM (2000) Paclitaxel loaded poly(l-lactic acid) microspheres for the prevention of intraperitoneal carcinomatosis after a surgical repair and tumor cell spill. Biomaterials 21:1959–1969

    Article  Google Scholar 

  • Lim HJ, Cho EC, Shim J, Kim DH, An EJ, Kim J (2008) Polymer-associated liposomes as a novel delivery system for cyclodextrin-bound drugs. J Colloid Interface Sci 320:460–468

    Article  Google Scholar 

  • Little SR, Lynn DM, Ge Q, Anderson DG, Puram SV, Chen J, Eisen HN, Langer R (2004) Poly-beta amino ester-containing microparticles enhance the activity of nonviral genetic vaccines. Proc Natl Acad Sci USA 101:9534–9539

    Article  Google Scholar 

  • Lu JJ, Jackson JK, Gleave ME, Burt HM (2008) The preparation and characterization of anti-VEGFR2 conjugated, paclitaxel-loaded PLLA or PLGA microspheres for the systemic targeting of human prostate tumors. Cancer Chemother Pharm 61:997–1005

    Article  Google Scholar 

  • Marre S, Jensen KF (2010) Synthesis of micro and nanostructures in microfluidic systems. Chem Soc Rev 39:1183–1202

    Article  Google Scholar 

  • Mora MF, Giacomelli CE, Garcia CD (2007) Electrophoretic effects of the adsorption of anionic surfactants to poly(dimethylsiloxane)-coated capillaries. Anal Chem 79:6675–6681

    Article  Google Scholar 

  • Murua A, Portero A, Orive G, Hernandez RM, Castro MD, Pedraz JL (2008) Cell microencapsulation technology: towards clinical application. J Control Release 132:76–83

    Article  Google Scholar 

  • Nisisako T, Torri T (2008) Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 8:287–293

    Article  Google Scholar 

  • Nisisako T, Torii T, Takahashi T, Takizawa Y (2006) Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system. Adv Mater 18:1152–1156

    Article  Google Scholar 

  • Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33:448–477

    Article  Google Scholar 

  • Park JS, Lee JH, Shin HS, Lee TW, Kim MS, Khang G, Rhee JM, Lee HK, Lee HB (2007) Biodegradable polymer microspheres for controlled drug release. Tissue Eng Regen Med 4:347–359

    Google Scholar 

  • Peppas NA (1985) Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv 60:110–111

    Google Scholar 

  • Ritger PL, Peppas NA (1987) A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 5:23–36

    Article  Google Scholar 

  • Shum HC, Kim JW, Weitz DA (2008) Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability. J Am Chem Soc 130:9543–9549

    Article  Google Scholar 

  • Skwarczynski M, Hayashi Y, Kiso Y (2006) Paclitaxel prodrugs: toward smarter delivery of anticancer agents. J Med Chem 49:7253–7269

    Article  Google Scholar 

  • Song TT, Yuan XB, Sun AP, Wang H, Kang CS, Ren Y, He B, Sheng J, Pu PY (2010) Preparation of injectable paclitaxel sustained release microspheres by spray drying for inhibition of glioma in vitro. J Appl Polym Sci 115:1534–1539

    Article  Google Scholar 

  • Spencer CM, Faulds D (1994) Paclitaxel—a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer. Drugs 48:794–847

    Article  Google Scholar 

  • Suyatma NE, Tighzert L, Copinet A (2005) Effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films. J Agric Food Chem 53:3950–3957

    Article  Google Scholar 

  • Szebeni J, Muggia FM, Alving CR (1998) Complement activation by Cremophor EL as a possible contributor to hypersensitivity to paclitaxel: an in vitro study. J Natl Cancer Inst 90:300–306

    Article  Google Scholar 

  • Tan WH, Takeuchi S (2007) Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv Mater 19:2696–2701

    Article  Google Scholar 

  • Teh SY, Lin R, Hung LH, Lee AP (2008) Droplet microfluidics. Lab Chip 8(2):198–220

    Article  Google Scholar 

  • Wang LY, Ma GH, Su ZG (2005) Preparation of uniform sized chitosan microspheres by membrane emulsification technique and application as a carrier of protein drug. J Control Release 106:62–75

    Article  Google Scholar 

  • Wei Z, Hao JG, Yuan S, Li YJ, Juan W, Sha XY, Fang XL (2009) Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: formulation, optimization and in vitro characterization. Int J Pharm 376:176–185

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  • Wong I, Ho CM (2009) Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid Nanofluid 7:291–306

    Article  Google Scholar 

  • Wu DP, Luo Y, Zhou XM, Dai ZP, Lin BC (2005) Multilayer poly(vinyl alcohol)-adsorbed coating on poly(dimethylsiloxane) microfluidic chips for biopolymer separation. Electrophoresis 26:211–218

    Article  Google Scholar 

  • Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    Article  Google Scholar 

  • Xu S, Nie ZH, Seo M, Lewis P, Kumacheva E, Stone HA, Garstecki P, Weibel DB, Gitlin I, Whitesides GM (2005) Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew Chem Int Ed 44:724–728

    Article  Google Scholar 

  • Xu QB, Hashimoto M, Dang TT, Hoare T, Kohane DS, Whitesides GM, Langer R, Anderson DG (2009) Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery. Small 5:1575–1581

    Article  Google Scholar 

  • Yeh CH, Lin YC (2009) Using a cross-flow microfluidic chip for monodisperse UV-photopolymerized microparticles. Microfluid Nanofluid 6:277–283

    Google Scholar 

  • Zhang K, Liang QL, Ma S, Mu X, Hu P, Wang YM, Luo GA (2009) On-chip manipulation of continuous picoliter-volume superparamagnetic droplets using a magnetic force. Lab Chip 9:2992–2999

    Article  Google Scholar 

  • Zhao LB, Pan L, Zhang K, Guo SS, Liu W, Wang Y, Chen Y, Zhao XZ, Chan HLW (2009) Generation of Janus alginate hydrogel particles with magnetic anisotropy for cell encapsulation. Lab Chip 9:2981–2986

    Article  Google Scholar 

  • Zhou JW, Ellis AV, Voelcker NH (2010) Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 31:2–16

    Article  Google Scholar 

  • Zhu LP, Li YG, Zhang QH, Wang HZ, Zhu MF (2010) Fabrication of monodisperse, large-sized, functional biopolymeric microspheres using a low-cost and facile microfluidic device. Biomed Microdevices 12:169–177

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by funding from National Basic Research Program (973 Program) of China (No. 2007CB714505), National Major Special Project of Science and Technology (No. 2009ZX09311-01) and Ministry of Education of China (No. 20080031012). The authors would like to thank Professor Zhang Xi (Tsinghua University) for measuring contact angle, ATR-FTIR and AFM images.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qionglin Liang or Guoan Luo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 679 kb)

Supplementary material 2 (MSG 368 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, T., Liang, Q., Zhang, K. et al. A modified microfluidic chip for fabrication of paclitaxel-loaded poly(l-lactic acid) microspheres. Microfluid Nanofluid 10, 1289–1298 (2011). https://doi.org/10.1007/s10404-010-0760-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0760-7

Keywords

Navigation