Skip to main content

Advertisement

Log in

Applications, techniques, and microfluidic interfacing for nanoscale biosensing

  • Review Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Biosensors based on nanotechnology are rapidly developing and are becoming widespread in the biomedical field and analytical chemistry. For these nanobiosensors to reach their potential, they must be integrated with appropriate packaging techniques, which are usually based on nano/microfluidics. In this review we provide a summary of the latest developments in nanobiosensors with a focus on label-based (fluorescence and nanoparticle) and label-free methods (surface plasmon resonance, micro/nanocantilever, nanowires, and nanopores). An overview on how these sensors interface with nano/microfluidics is then presented and the latest papers in the area summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackermann KR, Henkel T, Popp J (2007) Quantitative online detection of low concentrated drugs via a SERS microfluidic system. ChemPhysChem 8:2665–2670

    Article  Google Scholar 

  • Agrawal A, Zhang C, Byassee T, Tripp RA, Nie S (2006) Counting single native biomolecules and intact viruses with color-coded nanoparticles. Anal Chem 78:1061–1070

    Article  Google Scholar 

  • Albani JR (2007) Principles and applications of fluorescence spectroscopy. Wiley-Blackwell, New Jersey

    Book  Google Scholar 

  • Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5219

    Article  Google Scholar 

  • Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52

    Article  Google Scholar 

  • Aubin KL, Huang J, Park SM, Yang Y, Kondratovich M, Craighead HG, Ilic BR (2007) Microfluidic encapsulated nanoelectromechanical resonators. J Vac Sci Technol B 25:1171–1174

    Article  Google Scholar 

  • Bailey RC, Kwong GA, Radu CG, Witte ON, Heath JR (2007) DNA-encoded antibody libraries: a unified platform for multiplexed cell sorting and detection of genes and proteins. J Am Chem Soc 129:1959–1967

    Article  Google Scholar 

  • Banholzer MJ, Millstone JE, Qin L, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37:885–897

    Article  Google Scholar 

  • Bell SEJ, Sirimuthu NMS (2006) Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides. J Am Chem Soc 128:15580–15581

    Article  Google Scholar 

  • Benchaib A, Delorme R, Pluvinage M, Bryon PA, Souchier C (1996) Evaluation of five green fluorescence-emitting streptavidin-conjugated fluorochromes for use in immunofluorescence microscopy. Histochem Cell Biol 106:253–256

    Article  Google Scholar 

  • Biswal SL, Raorane D, Chaiken A, Birecki H, Majumdar A (2006) Nanomechanical detection of DNA melting on microcantilever surfaces. Anal Chem 78:7104–7109

    Article  Google Scholar 

  • Bizzarri AR, Cannistraro S (2007) SERS detection of thrombin by protein recognition using functionalized gold nanoparticles. Nanomed Nanotechnol Biol Med 3:306–310

    Article  Google Scholar 

  • Bonham AJ, Braun G, Pavel I, Moskovits M, Reich NO (2007) Detection of sequence-specific protein-DNA interactions via surface enhanced resonance Raman scattering. J Am Chem Soc 129:14572–14573

    Article  Google Scholar 

  • Braun G, Lee SJ, Dante M, Nguyen TQ, Moskovits M, Reich N (2007) Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films. J Am Chem Soc 129:6378–6379

    Article  Google Scholar 

  • Briggs MS, Burns DD, Cooper ME, Gregory SJ (2000) A pH sensitive fluorescent cyanine dye for biological applications. Chem Commun 23:2323–2324

    Article  Google Scholar 

  • Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  Google Scholar 

  • Bunimovich YL, Shin YS, Yeo WS, Amori M, Kwong G, Heath JR (2006) Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J Am Chem Soc 128:16323–16331

    Article  Google Scholar 

  • Burg TP, Godin M, Knudsen SM, Shen W, Carlson G, Foster JS, Babcock K, Manalis SR (2007) Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446:1066–1069

    Article  Google Scholar 

  • Cai H, Wang Y, He P, Fang Y (2002) Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label. Anal Chim Acta 469:165–172

    Article  Google Scholar 

  • Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  Google Scholar 

  • Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46

    Article  Google Scholar 

  • Chang-yen DA, Myszka D, Gale BK (2006) A novel PDMS Microfluidic spotter for fabrication of protein chips and microarrays. J Microelectromech Syst 5:1145–1151

    Article  Google Scholar 

  • Chen L, Choo J (2008) Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips. Electrophoresis 29:1815–1828

    Article  Google Scholar 

  • Cheng MM-C, Cuda G, Bunimovich YL, Gaspari M, Heath JR, Hill HD, Mirkin CA, Nijdam AJ, Terracciano R, Thundat T, Ferrari M (2006) Nanotechnologies for biomolecular detection and medical diagnostics. Curr Opin Chem Biol 10:11–19

    Article  Google Scholar 

  • Cheong KH, Yi DK, Lee JG, Park JM, Kim MJ, Edel JB, Ko C (2008) Gold nanoparticles for one step DNA extraction and real-time PCR of pathogens in a single chamber. Lab Chip 8:810–813

    Article  Google Scholar 

  • Chinowsky TM, Soelberg SD, Baker P, Swanson NR, Kauffman P, Mactutis A, Grow MS, Atmar R, Yee SS, Furlong CE (2007) Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection. Biosens Bioelectron 22:2268–2275

    Article  Google Scholar 

  • Cross SE, Jin YS, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783

    Article  Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis and nanotechnology. Chem Rev 104:293–346

    Article  Google Scholar 

  • Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 2:209–215

    Article  Google Scholar 

  • deMello AJ (2006) Control and detection of chemical reaction in microfluidic systems. Nature 442:394–402

    Article  Google Scholar 

  • Doering WE, Piotti ME, Natan MJ, Freeman RG (2007) SERS as a foundation for nanoscale, optically detected biological labels. Adv Mater 19:3100–3108

    Article  Google Scholar 

  • Dootz R, Otten A, Köster S, Struth B, Pfohl T (2006) Evolution of DNA compaction in microchannels. J Phys Condens Matter 18:S639–S652

    Article  Google Scholar 

  • Driskell JD, Shanmukh S, Liu Y, Chaney SB, Tang XJ, Zhao YP, Dluhy RA (2008) The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates. J Phys Chem C 112:895–901

    Article  Google Scholar 

  • Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762

    Article  Google Scholar 

  • Dubus S, Gravel J-F, Drogoff BL, Nobert P, Veres T, Boudreau D (2006) PCR-free DNA detection using a magnetic bead-supported polymeric transducer and microelectromagnetic traps. Anal Chem 78:4457–4464

    Article  Google Scholar 

  • Ellington AD, Robertson MP, Bull J (1997) In vitro evolution—ribozymes in wonderland. Science 276:546–547

    Article  Google Scholar 

  • Enderlein J, Ambrose WP, Goodwin PM, Keller RA (1999) Fluorescence detection of single molecules applicable to small volume assays. In: Kohler JM, TMHPS (eds) Microsystem technology: a powerful tool for biomolecular studies. Birkhauser, Basel

  • Endo T, Kerman K, Nagatani N, Hiepa HM, Kim D-K, Yonezawa Y, Nakano K, Tamiya E (2006) Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip. Anal Chem 78:6465–6475

    Article  Google Scholar 

  • Englebienne P, Hoonacker AV, Verhas M (2003) Surface plasmon resonance: principles, methods and applications in biomedical sciences. Spectroscopy 17:255–273

    Google Scholar 

  • Fan R, Karnik R, Yue M, Li D, Majumdar A, Yang P (2005) DNA translocation in inorganic nanotubes. Nano Lett 5:1633–1637

    Article  Google Scholar 

  • Farrer RA, Butterfield FL, Chen VW, Fourkas JT (2005) Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles. Nano Lett 5:1139–1142

    Article  Google Scholar 

  • Feltis BN, Sexton BA, Glenn FL, Best MJ, Wilkins M, Davis TJ (2008) A hand-held surface plasmon resonance biosensor for the detection of ricin and other biological agents. Biosens Bioelectron 23:1131–1136

    Article  Google Scholar 

  • Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  Google Scholar 

  • Fortina P, Kricka LJ, Graves DJ, Park J, Hyslop T, Tam F, Halas N, Surrey S, Waldman SA (2007) Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer. Trends Biotechnol 25:145–152

    Article  Google Scholar 

  • Fritz J, Baller MK, Lang HP, Rothuizen H, Vettiger P, Meyer E, Guntherodt HJ, Gerber C, Gimzewski JK (2000) Translating biomolecular recognition into nanomechanics. Science 288:316–318

    Article  Google Scholar 

  • Fu CC, Lee HY, Chen K, Lim TS, Wu HY, Lin PK, Wei PK, Tsao PH, Chang HC, Fann W (2007) Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci USA 104:727–732

    Article  Google Scholar 

  • Galopin E, Beaugeois M, Pinchemel B, Camart J-C, Bouazaoui M, Thomy V (2007) SPR biosensing coupled to a digital microfluidic microstreaming system. Biosens Bioelectron 23:746–750

    Article  Google Scholar 

  • Gary CH (1993) The basics of nonradioactive detection systems. In: Methods in nonradioactive detection, p. 4 Medix Biotech, Inc., Foster

  • Geddes CD, Parfenov A, Roll D, Gryczynski I, Malicka J, Lakowicz JR (2003) Silver fractal-like structures for metal-enhanced fluorescence: enhanced fluorescence intensities and increased probe photostabilities. J Fluoresc 13:267–276

    Article  Google Scholar 

  • Giesfeldt KS, Connatser RM, De Jesus MA, Dutta P, Sepaniak MJ (2005) Gold-polymer nanocomposites: studies of their optical properties and their potential as SERS substrates. J Raman Spectrosc 36:1134–1142

    Article  Google Scholar 

  • Griffiths J (2008) The realm of the nanopore: interest in nanoscale research has skyrocketed, and the humble pore has become a king. Anal Chem 80:23–27

    Article  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  Google Scholar 

  • Gupta AK, Nair PR, Akin D, Ladisch MR, Broyles S, Alam MA, Bashir R (2006) Anomalous resonance in a nanomechanical biosensor. Proc Natl Acad Sci USA 103:13362–13367

    Article  Google Scholar 

  • Haes AJ, Chang L, Klein WL, Duyne RPV (2005) Detection of a biomarker for Alzheimer’s disease form synthetic and clinical sample using a nanoscale optical biosensor. J Am Chem Soc 127:1164–1171

    Article  Google Scholar 

  • Haes AJ, Hall WP, Chang L, Klein WL, Duyne RPV (2004) A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease. Nano Lett 4:1029–1034

    Article  Google Scholar 

  • Hansen KM, Thundat T (2005) Microcantilever biosensors. Methods 37:57–64

    Article  Google Scholar 

  • Haustein E, Schwille P (2007) Fluorescence correlation spectroscopy: novel variations of an established technique. Annu Rev Biophys Biomol Struct 36:151–169

    Article  Google Scholar 

  • Hering K, Cialla D, Ackermann K, Dörfer T, Möller R, Schneidewind H, Mattheis R, Fritzsche W, Rösch P, Popp J (2008) SERS: a versatile tool in chemical and biochemical diagnostics. Anal Bioanal Chem 390:113–124

    Article  Google Scholar 

  • Hermanson GT (1996) Chapter 8. Tags and probes. In: Bioconjugate techniques. Academic Press, San Diego

  • Hinterdorfer P, Dufrene YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3:347–355

    Article  Google Scholar 

  • Ho YP, Kung MC, Yang S, Wang TH (2005) Multiplexed hybridization detection with multicolor colocalization of quantum dot nanoprobes. Nano Lett 5:1693–1697

    Article  Google Scholar 

  • Ho Y-P, Chen HH, Leong KW, Wang T-H (2006) Evaluating the intracellular stability and unpacking of DNA nanocomplexes by quantum dots-FRET. J Controlled Release 116:83–89

    Article  Google Scholar 

  • Hosokawa K, Sato K, Ichikawa N, Maeda M (2004) Power-free poly(dimethylsiloxane) microfluidic devices for gold nanoparticle-based DNA analysis. Lab Chip 4:181–185

    Article  Google Scholar 

  • Hsing I-M, Xu Y, Zhao W (2007) Micro and nano magnetic particles for applications in biosensing. Electroanalysis 19:755–768

    Article  Google Scholar 

  • Huan-Xiang Z (2001) Disparate ionic-strength dependencies of on and off rates in protein–protein association. Biopolymers 59:427–433

    Article  Google Scholar 

  • Hun X, Zhang Z (2007) Functionalized fluorescent core-shell nanoparticles used as a fluorescent lavels in fluoroimmunoassay for IL-6. Biosens Bioelectron 22:2743–2748

    Article  Google Scholar 

  • Huo Q, Worden JG (2007) Monofunctional gold nanoparticles: synthesis and applications. J Nanopart Res 9:1013–1025

    Article  Google Scholar 

  • Iqbal SM, Akin D, Bashir R (2007) Solid-state nanopore channels with DNA selectivity. Nat Nanotechnol 2:243–248

    Article  Google Scholar 

  • Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51

    Article  Google Scholar 

  • Jaiswal JK, Goldman ER, Mattoussi H, Simon SM (2004) Use of quantum dots for live cell imaging. Nat Methods 1:73–78

    Article  Google Scholar 

  • Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biological applications of quantum dots. Biomaterials 28:4717–4732

    Article  Google Scholar 

  • Jayaraman S, Joo NS, Reitz B, Wine JJ, Verkman AS (2001) Submucosal gland secretions in airways from cystic fibrosis patients have normal [Na(+)] and pH but elevated viscosity. Proc Natl Acad Sci 98:8119–8123

    Article  Google Scholar 

  • Jeanmaire DL, Duyne RPV (1977) Surface Raman electrochemistry part I: heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84:1–20

    Article  Google Scholar 

  • Jin R, Cao YC, Hao E, Métraux GS, Schatz GC, Mirkin CA (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425:487–490

    Article  Google Scholar 

  • Karst U (2006) Where the worlds of nanotechnology, materials science, and bioanalysis converge. Anal Bioanal Chem 384:559

    Article  Google Scholar 

  • Kessler C (1992) General aspects of nonradioactive labeling and detection. In: Nonradioactive labeling and detection of biomolecules. Springer, Berlin

  • Kewal KJ (2003) Nanodiagnostics: application of nanotechnology in molecular diagnostics. Exp Rev Mol Diagn 3:153–161

    Article  Google Scholar 

  • Kewal KJ (2005a) Nanotechnology in clinical laboratory diagnostics. Clin Chim Acta 358:37–54

    Article  Google Scholar 

  • Kewal KJ (2005b) The role of nanobiotechnology in drug discovery. Drug Discov Today 10:1435–1442

    Article  Google Scholar 

  • Keyser UF, Koeleman BN, Dorp SV, Krapf D, Smeets RMM, Lemay SG, Dekker NH, Dekker C (2006) Direct force measurements on DNA in a solid-state nanopore. Nat Phys 2:473–477

    Article  Google Scholar 

  • Kiefer W (2007) Recent advances in linear and nonlinear Raman spectroscopy I. J Raman Spectrosc 38:1538–1553

    Article  Google Scholar 

  • Kim J, Kim J, Choi H, Lee S, Jun B, Yu K, Kuk E, Kim Y, Jeong D, Cho M, Lee Y (2006) Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting. Anal Chem 78:6967–6973

    Article  Google Scholar 

  • Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai HJ (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625

    Article  Google Scholar 

  • Kuo T-C, Donald M, Cannon J, Chen Y, Tulock JJ, Shannon MA, Sweedler JV, Bohn PW (2003) Gateable nanofluidic interconnects for multilayered microfluidic separation systems. Anal Chem 75:1861–1867

    Article  Google Scholar 

  • Lanyon YH, De Marzi G, Watson YE, Quinn AJ, Gleeson JP, Redmond G, Arrigan DW (2007) Fabrication of nanopore array electrodes by focused ion beam milling. Anal Chem 79:3048–3055

    Article  Google Scholar 

  • Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436

    Article  Google Scholar 

  • Lechuga LM, Tamayo J, Alvarez M, Carrascosa LG, Yufera A, Doldan R, Peralias E, Rueda A, Plaza JA, Zinoviev K, Dominguez C, Zaballos A, Moreno M, Martinez C, Wenn D, Harris N, Bringer C, Bardinal V, Camps T, Vergnenegre C, Fontaine C, Diaz V, Bernad A (2006) A highly sensitive microsystem based on nanomechanical biosensors for genomics applications. Sens Actuators B Chem 118:2–10

    Article  Google Scholar 

  • Lee K-S, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225

    Article  Google Scholar 

  • Lee K-H, Su Y-D, Chen S-J, Tseng F-G, Lee G-B (2007a) Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay. Biosens Bioelectron 23:466–472

    Article  Google Scholar 

  • Lee S, Mandic J, Van Vliet KJ (2007b) Chemomechanical mapping of ligand-receptor binding kinetics on cells. Proc Natl Acad Sci USA 104:9609–9614

    Article  Google Scholar 

  • Lefebure S, Dubois E, Cabuil V, Neveu S, Massart R (1998) Monodisperse magnetic nanoparticles: preparation and dispersion in water and oils. J Mater Res 13:2975–2981

    Article  Google Scholar 

  • Li G, Joshi V, White RL, Wang SX (2003) Detection of single micron-sized magnetic bead and magnetic nanoparticles using spin valve sensors for biological applications. J Appl Phys 93:7557–7559

    Article  Google Scholar 

  • Li G, Sun S, Wilson RJ, White RL, Pourmand N, Wang SX (2006) Spin valve sensors for ultrasensitive detection of superparamagnetic nanoparticles for biological applications. Sens Actuators A 126:98–106

    Article  Google Scholar 

  • Li M, Tang HX, Roukes ML (2007) Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat Nanotechnol 2:114–120

    Article  Google Scholar 

  • Lien V, Vollmer F (2007) Microfluidic flow rate detection based on integrated optical fiber cantilever. Lab Chip 7:1352–1356

    Article  Google Scholar 

  • Liu GL, Lu Y, Kim J, Doll JC, Lee LP (2005a) Magnetic nanocrescent as controllable surface-enhanced Raman scattering nanoprobes for biomolecular imaging. Adv Mater 17:2683–2688

    Article  Google Scholar 

  • Liu W-T, Zhu L, Qin Q-W, Zhang Q, Feng H, Ang S (2005b) Microfluidic device as a new platform for immunofluorescent detection of viruses. Lab Chip 5:1327–1330

    Article  Google Scholar 

  • Liu B, Archer CT, Burdine L, Gillette TG, Kodadek T (2007) Label transfer chemistry for the characterization of protein–protein interactions. J Am Chem Soc 129:12348–12349

    Article  Google Scholar 

  • Lucas LJ, Chesler JN, Yoon JY (2007) Lab-on-a-chip immunoassay for multiple antibodies using microsphere light scattering and quantum dot emission. Biosens Bioelectron 23:675–681

    Article  Google Scholar 

  • Luo C, Fu Q, Li H, Xu L, Sun M, Ouyang Q, Chen Y, Ji H (2005) PDMS microfludic device for optical detection of protein immunoassay using gold nanoparticles. Lab Chip 5:726–729

    Article  Google Scholar 

  • Luo Y, Yu F, Zare RN (2008) Microfluidic device for immunoassays based on surface plasmon resonance imaging. Lab Chip 8:694–700

    Article  Google Scholar 

  • Martin CR, Siwy ZS (2007) Learning nature’s way: biosensing with synthetic nanopores. Science 317:331–332

    Article  Google Scholar 

  • Masmanidis SC, Karabalin RB, De Vlaminck I, Borghs G, Freeman MR, Roukes ML (2007) Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation. Science 317:780–783

    Article  Google Scholar 

  • Mason WT (1999) Fluorescent and luminescent probes for biological activity. Academic Press

  • Maxwell DJ, Taylor JR, Nie S (2002) Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc 124:9606–9612

    Article  Google Scholar 

  • Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM (2003) Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater 2:630–638

    Article  Google Scholar 

  • Medintz IL, Konnert JH, Clapp AR, Stanish I, Twigg ME, Mattoussi H, Mauro JM, Deschamps JR (2004) A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly. PNAS 101:9612–9617

    Article  Google Scholar 

  • Meserve D, Wang Z, Zhang DD, Wong PK (2008) A double-stranded molecular probe for homogeneous nucleic acid analysis. Analyst 133:1013–1019

    Article  Google Scholar 

  • Miao XY, Lin LY (2007a) Large dielectrophoresis force and torque induced by localized surface plasmon resonance of Au nanoparticle array. Optics Lett 32:295–297

    Article  Google Scholar 

  • Miao XY, Lin LY (2007b) Trapping and manipulation of biological particles through a plasmonic platform. IEEE J Selected Topics Quantum Electron 13:1655–1662

    Article  Google Scholar 

  • Miao XY, Wilson BK, Lin LY (2008) Localized surface plasmon assisted microfluidic mixing. Appl Phys Lett 92:124108.1–124108.3

    Google Scholar 

  • Miller MM, Prinz GA, Cheng SF, Bounnak S (2002) Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor: a model for a magnetoresistance-based biosensor. Appl Phys Lett 81:2211–2213

    Article  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  Google Scholar 

  • Mulvaney SP, Musick MD, Keating CD, Natan MJ (2003) Glass-coated, analyte-tagged nanoparticles: a new tagging system based on detection with surface-enhanced Raman scattering. Langmuir 19:4784–4790

    Article  Google Scholar 

  • Murphy L (2006) Biosensors and bioelectrochemistry. Curr Opin Chem Biol 10:177–184

    Article  Google Scholar 

  • Nair PR, Alam MA (2006) Performance limits of nanobiosensors. Appl Phys Lett 88:233120

    Article  Google Scholar 

  • Nakamura R, Tucker ES, Carlson IH (1991) Immunoassays in the clinical laboratory. In: Henry JBE (ed) Clinical diagnosis and management by laboratory methods. WB Saunders, Philadelphia, pp 870–871

    Google Scholar 

  • Nam J-M, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the utlrasensitive detection of proteins. Science 301:1884–1886

    Article  Google Scholar 

  • Nam J-M, Stoeva SI, Mirkin CA (2004) Bio-bar-code-based dna detection with pcr-like sensitivity. J Am Chem Soc 126:5932–5933

    Article  Google Scholar 

  • Natarajan S, Katsamba PS, Miles A, Eckman J, Papalia GA, Rich RL, Gale BK, Myszka DG (2008) Continuous-flow microfluidic printing of proteins for array-based applications including surface plasmon resonance imaging 373:141–146

  • Ngomsik A-F, Beeb A, Drayea M, Cotea G, Cabuilb V (2005) Magnetic nano- and microparticles for metal removal and environmental applications: a review. Comptes Rendus Chimie 8:963–970

    Article  Google Scholar 

  • Nguyena B., Taniousa FA, Wilson WD (2007) Biosensor-surface plasmon resonance: quantitative analysis of small molecule–nucleic acid interactions. Methods 42:150–161

    Google Scholar 

  • Nie S, Xing Y, Kim GJ, Simons J (2007) Nanotechnology application in cancer. Annu Rev Biomed Eng 9:257–288

    Article  Google Scholar 

  • Obata K, Tajima H, Yohda M, Matsunaga T (2002) Recent developments in laboratory automation using magnetic particles for genome analysis. Pharmacogenomics 3:697–708

    Article  Google Scholar 

  • Ormonde AD, Hicks EC, Castillo J, Van Duyne RP (2004) Nanosphere lithography: fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy. Langmuir The ACS J Surf Colloids 20:6927–6931

    Google Scholar 

  • Osborne SE, Matsumura I, Ellington AD (1997) Aptamers as therapeutic and diagnostic reagents: problems and prospects. Curr Opin Chem Biol 1:5–9

    Article  Google Scholar 

  • Ozsoz M, Erdem A, Kerman K, Ozkan D, Tugrul B, Topcuoglu N (2003) Electrochemical genosensor based on colloidal gold nanoparticles for the detection of factor V Leiden mutation using disposable pencil graphite electrodes. Anal Chem 75:2181–2187

    Article  Google Scholar 

  • Panchuk-Voloshina N, Haugland RP, Bishop-Stewart J, Bhalgat MK, Millard PJ, Mao F, Leung W-Y, Haugland RP (1999) Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J Histochem Cytochem 47:1179–1188

    Google Scholar 

  • Park S-J, Taton TA, Mirkin CA (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295:1503–1506

    Article  Google Scholar 

  • Park T, Lee S, Seong GH, Choo J, Lee EK, Kim YS, Ji WH, Hwang SY, Gweon D-G, Lee S (2005) Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfludic chip: confocal surface-enhanced Raman spectroscopic study. Lab Chip 5:437–442

    Article  Google Scholar 

  • Park TJ, Lee SY, Lee SJ, Park JP, Yang KS, Lee KB, Ko S, Park JB, Kim T, Kim SK, Shin YB, Chung BH, Ku SJ, Kim DH, Choi IS (2006) Protein nanopatterns and biosensors using gold binding polypeptide as a fusion partner. Anal Chem 78:7197–7205

    Article  Google Scholar 

  • Patolsky F, Zheng G, Hayden O, Lakadamyali M, Zhuang X, Lieber CM (2004) Electrical detection of single viruses. Proc Natl Acad Sci USA 101:14017–14022

    Article  Google Scholar 

  • Patolsky F, Timko BP, Yu G, Fang Y, Greytak AB, Zheng G, Lieber CM (2006) Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313:1100–1104

    Article  Google Scholar 

  • Patolsky F, Timko BP, Zheng G, Lieber CM (2007) Nanowire-based nanoelectronic devices in the life sciences. MRS Bull 32:142–149

    Google Scholar 

  • Perez JM, Josephson L, O’Loughlin T, Hogemann D, Weissleder R (2002) Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 20:816–820

    Google Scholar 

  • Perez JM, Josephson L, Weissleder R (2004) Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. Chem Biol Chem 5:261–264

    Google Scholar 

  • Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901

    Article  Google Scholar 

  • Piorek BD, Lee SJ, Santiago JG, Moskovits M, Banerjee S, Meinhart CD (2007) Free-surface microfluidic control of surface-enhanced Raman spectroscopy for the optimized detection of airborne molecules. Proc Natl Acad Sci USA 104:18898–18901

    Article  Google Scholar 

  • Porter MD, Lipert RJ, Siperko LM, Wang G, Narayanan R (2008) SERS as a bioassay platform: fundamentals, design, and applications. Chem Soc Rev 37:1001–1011

    Article  Google Scholar 

  • Puleo CM, Yeh HC, Liu KJ, Wang TH (2008) Coupling confocal fluorescence detection and recirculating microfluidic control for single particle analysis in discrete nanoliter volumes. Lab Chip 8:822–825

    Article  Google Scholar 

  • Qian X-M, Nie SM (2008) Single-molecular and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev 37:912–920

    Article  Google Scholar 

  • Qian X-M, Peng XH, Ansari DO, Yin-Goan Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie SM (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26:83–90

    Article  Google Scholar 

  • Qin L, Banholzer MJ, Millstone JE, Mirkin CA (2007) Nanodisk codes. Nano Lett 7:3849–3853

    Article  Google Scholar 

  • Quist A, Chand A, Ramachandran S, Cohen D, Lal R (2006) Piezoresistive cantilever based nanoflow and viscosity sensor for microchannels. Lab Chip 6:1450–1454

    Article  Google Scholar 

  • Raman CV, Krishnan KS (1928) A new type of secondary radiation. Nature 121:501–502

    Article  Google Scholar 

  • Ramanathan K, Bangar MA, Yun M, Chen W, Myung NV, Mulchandani A (2005) Bioaffinity sensing using biologically functionalized conducting-polymer nanowire. J Am Chem Soc 127:496–497

    Article  Google Scholar 

  • Rhee M, Burns MA (2007) Nanopore sequencing technology: nanopore preparations. Trends Biotechnol 25:174–181

    Article  Google Scholar 

  • Rich RL, Cannon MJ, Jenkins J, Pandian P, Sundaram S, Magyar R, Brockman J, Lambert J, Myszka DG (2008) Extracting kinetic rate constants from surface plasmon resonance array systems. Anal Biochem 373:112–120

    Article  Google Scholar 

  • Riegger L, Grumann M, Nann T, Riegler J, Ehlert O, Bessler W, Mittenbuehler K, Urban G, Pastewka L, Brenner T, Zengerle R, Ducrée J (2006) Read-out concepts for multiplexed bead-based fluorescence immunoassays on centrifugal microfluidic platforms. Sens Actuators A Phys 126:455–462

    Article  Google Scholar 

  • Safarik I, Safarikova M (2004) Magnetic techniques for the isolation and purification of proteins and peptides. BioMagnetic Res Technol 2:1–17

    Article  Google Scholar 

  • Sato Y, Hosokawa K, Maeda M (2008) Detection of non-cross-linking interaction between DNA-modified gold nanoparticles and a DNA-modified flat gold surface using surface plasmon resonance imaging on a microchip. Colloids Surf B Biointerfaces 62:71–76

    Article  Google Scholar 

  • Sha MY, Xu H, Penn SG, Cromer R (2007) SERS nanoparticles: a new optical detection modality for cancer diagnosis. Nanomedicine 2:725–734

    Article  Google Scholar 

  • Squires TM, Messinger RJ, Manalis SR (2008) Making it stick: convection, reaction and diffusion in surface-based biosensors. Nat Biotechnol 26:417–426

    Article  Google Scholar 

  • Stavis SM, Edel JB, Samiee KT, Craighead HG (2005) Single molecule studies of quantum dot conjugates in a submicrometer fluidic channel. Lab Chip 5:337–343

    Article  Google Scholar 

  • Stefureac R, Waldner L, Howard P, Lee JS (2008) Nanopore analysis of a small 86-residue protein. Small 4:59–63

    Article  Google Scholar 

  • Stern E, Klemic JF, Routenberg DA, Wyrembak PN, Turner-Evans DB, Hamilton AD, LaVan DA, Fahmy TM, Reed MA (2007a) Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445:519–522

    Article  Google Scholar 

  • Stern E, Wagner R, Sigworth FJ, Breaker R, Fahmy TM, Reed MA (2007b) Importance of the debye screening length on nanowire field effect transistor sensors. Nano Lett 7:3405–3409

    Article  Google Scholar 

  • Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521

    Article  Google Scholar 

  • Stiles PL, Dieringer JA, Shah NC, Duyne RPV (2008) Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 1:20.1–20.26

    Article  Google Scholar 

  • Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120:1959–1964

    Article  Google Scholar 

  • Sun J, Morgan M, Shen R-F, Steenbergen C, Murphy E (2007) Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transport. Circ Res 101:1155–1163

    Article  Google Scholar 

  • Suzuki M, Ozawa F, Sugimoto W, Aso S (2002) Miniature surface-plasmon resonance immunosensors- rapid and repetitive procedure. Anal Bioanal Chem 372:301–304

    Article  Google Scholar 

  • Tang D, Yuan R, Chai Y (2007) Magnetic control of an electrochemical microfluidic device with an arrayed immunosensor for simultaneous multiple immunoassays. Clin Chem 53:1323–1329

    Article  Google Scholar 

  • Tansil NC, Gao Z (2006) Nanoparticles in biomolecular detection. Nano Today 1:28–37

    Article  Google Scholar 

  • Taubenberger A, Cisneros DA, Friedrichs J, Puech PH, Muller DJ, Franz CM (2007) Revealing early steps of alpha(2)beta(1) integrin-mediated adhesion to collagen type I by using single-cell force spectroscopy. Mol Biol Cell 18:1634–1644

    Article  Google Scholar 

  • Turner APF (2000) Biochemistry—biosensors sense and sensitivity. Science 290:1315–1317

    Article  Google Scholar 

  • Valdes-Aguilera O, Neckers DC (1989) Aggregation phenomena in xanthene dyes. Acc Chem Res 22:171–177

    Article  Google Scholar 

  • Vestergaard M, Kerman K, Kim DK, Ha MH, Tamiya E (2008) Detection of Alzheimer’s tau protein using localised surface plasmon resonance-based immunochip. Talanta 74:1038–1042

    Article  Google Scholar 

  • Vo-Dinh T, Yan F, Wabuyle MB (2005) Surface-enhanced Raman scattering for medical diagnostics and biological imaging. J Raman Spectrosc 36:640–647

    Article  Google Scholar 

  • Wang WU, Chen C, Lin KH, Fang Y, Lieber CM (2005) Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc Natl Acad Sci USA 102:3208–3212

    Article  Google Scholar 

  • Wang AJ, Xu JJ, Zhang Q, Chen HY (2006a) The use of poly(dimethylsiloxane) surface modification with gold nanoparticles for the microchip electrophoresis. Talanta 69:210–215

    Article  Google Scholar 

  • Wang F, Tan WB, Zhang Y, Fan XP, Wang MQ (2006b) Luminescent nanomaterials for biological labelling. Nanotechnology 17:R1–R13

    Article  Google Scholar 

  • Wang Z, Gidwani V, Zhang DD, Wong PK (2008) Separation-free detection of nuclear factor kappa B with double-stranded molecular probes. Analyst 133:998–1000

    Article  Google Scholar 

  • Watkins J, Altazan JD, Elder P, Li CY, Nunez MT, Cui XX, Glass J (1992) Kinetic characterization of reductant dependent processes of iron mobilization from endocytic vesicles. J Biochem 31:5820–5830

    Article  Google Scholar 

  • Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  Google Scholar 

  • Wu GH, Datar RH, Hansen KM, Thundat T, Cote RJ, Majumdar A (2001) Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat Biotechnol 19:856–860

    Article  Google Scholar 

  • Wunderlich BK, Neff PA, Bausch AR (2007) Mechanism and sensitivity of the intrinsic charge detection of biomolecular interactions by field effect devices. Appl Phys Lett 91:083904

    Article  Google Scholar 

  • Xia N, Hunt TP, Mayers BT, Alsberg E, Whitesides GM, Westervelt RM, Ingber DE (2006) Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomed Microdev 8:299–308

    Article  Google Scholar 

  • Yan Q, Chen A, Chua SJ, Zhao XS (2006) Nanosphere lithography from template-directed colloidal sphere assemblies. J Nanosci Nanotechnol 6:1815–1818

    Article  Google Scholar 

  • Yeh H-C, Simone E, Zhang C, Wang T-H (2004) Single bio-molecule detection with quantum dots in a microchannel. In: Micro electro mechanical systems, 2004. 17th IEEE International Conference on. (MEMS), pp 371–374

  • Yeh HC, Ho YP, Shih IM, Wang TH (2006a) Homogeneous point mutation detection by quantum dot-mediated two-color fluorescence coincidence analysis. Nucl Acids Res 34

  • Yeh HC, Puleo CM, Lim TC, Ho YP, Giza PE, Huang RCC, Wang TH (2006b) A microfluidic-FCS platform for investigation on the dissociation of Sp1-DNA complex by doxorubicin. Nucl Acids Res 34

  • Yeung SW, Lee TMH, Cai H, Hsing IM (2006) A DNA biochip for on-the-spot multiplexed pathogen identification. Nucl Acids Res 34

  • Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC (2005) Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc 127:17604–17605

    Article  Google Scholar 

  • Yu X, Xu D, Cheng Q (2006) Label-free detection methods for protein microarrays. Proteomics 6:5493–5503

    Article  Google Scholar 

  • Yu KN, Lee SM, Han JY, Park H, Woo MA, Noh MS, Hwang SK, Kwon JT, Jin H, Kim YK, Hergenrother PJ, Jeong DH, Lee YS, Cho MH (2007) Multiplex targeting, tracking, and imaging of apoptosis by fluorescent surface enhanced Raman spectroscopic dots. Bioconjug Chem 18:1155–1162

    Article  Google Scholar 

  • Zhang CY, Yeh HC, Kuroki MT, Wang TH (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4:826–831

    Article  Google Scholar 

  • Zhang J, Lang HP, Huber F, Bietsch A, Grange W, Certa U, McKendry R, Guntgerodt HJ, Hegner M, Gerber C (2006a) Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nat Nanotechnol 1:214–220

    Article  Google Scholar 

  • Zhang JG, Gao Y, Alvarez-Puebla RA, Buriak JM, Fenniri H (2006b) Synthesis and SERS properties of nanocristalline gold octahedra generated from thermal decomposition of HAuCl4 in block copolymers. Adv Mater 18:3233–3237

    Article  Google Scholar 

  • Zhang Q, Zhu L, Feng H, Ang S, Chau FS, Liu W-T (2006c) Microbial detection in microfluidic devices through dual staining of quantum dots-labeled immunoassay and RNA hybridization. Anal Chim Acta 556:171–177

    Article  Google Scholar 

  • Zhang G-J, Zhang G, Chua JH, Chee R-E, Wong EH, Agarwal A, Buddharaju KD, Singh N, Gao Z, Balasubramanian N (2008a) DNA sensing by silicon nanowire: charge layer distance dependence. Nano Lett 8:1066–1070

    Article  Google Scholar 

  • Zhang Q, Xu JJ, Liu Y, Chen HY (2008b) In situ synthesis of poly(dimethylsiloxane)-gold nanoparticles composite films and its application in microfluidic systems. Lab Chip 8:352–357

    Article  Google Scholar 

  • Zhang X, Yin H, Cooper JM, Haswell SJ (2008c) Characterization of cellular chemical dynamics using combined microfluidic and Raman techniques. Anal Bioanal Chem 390:833–840

    Article  Google Scholar 

  • Zhao J, Zhang X, Yonzon CR, Haes AJ, Van Duyne RP (2006) Localized surface plasmon resonance biosensors. Nanomed (Lond, Engl) 1:219–228

    Article  Google Scholar 

  • Zhao Q, Sigalov G, Dimitrov V, Dorvel B, Mirsaidov U, Sligar S, Aksimentiev A, Timp G (2007) Detecting SNPs using a synthetic nanopore. Nano Lett 7:1680–1685

    Article  Google Scholar 

  • Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294–1301

    Article  Google Scholar 

  • Zhou K, Kovarik ML, Jacobson SC (2008) Surface-charge induced ion depletion and sample stacking near single nanopores in microfluidic devices. J Am Chem Soc 130:8614–8616

    Article  Google Scholar 

  • Ziegler C (2004) Cantilever-based biosensors. Anal Bioanal Chem 379:946–959

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Prevent Cancer Foundation and Arizona Biomedical Research Commission (to P. K. W.) and the National Science Foundation (B. K. G).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pak Kin Wong or Bruce K. Gale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Junkin, M., Kim, DH. et al. Applications, techniques, and microfluidic interfacing for nanoscale biosensing. Microfluid Nanofluid 7, 149–167 (2009). https://doi.org/10.1007/s10404-009-0431-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-009-0431-8

Keywords

Navigation