Skip to main content

Advertisement

Log in

Experimental study of thermal conductivity and phase change performance of nanofluids PCMs

  • Short Communication
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

A new sort of nanofluids phase change materials (PCMs) is developed by suspending small amount of TiO2 nanoparticles in saturated BaCl2 aqueous solution. The resulting nanofluids PCMs possess remarkably high thermal conductivities compared to the base material. Cool storage/supply experiments conducted in a small apparatus have shown the excellent phase change performance of the nanofluids PCMs. The cool storage/supply rate and the cool storage/supply capacity all increase greatly those that of BaCl2 aqueous solution without added nanoparticles. The higher thermal performances of nanofluids PCMs indicate that they have a potential for substituting conventional PCMs in cool storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bauer C, Wirtz R (2000) Thermal characteristics of a compact, passive thermal energy storage device. In: Proceedings of the 2000 ASME IMECE, Orlando, USA

  • Chopkar M, Das PK, Manna I (2006) Synthesis and characterization of nanofluid for advanced heat transfer applications. Scr Mater 55:549–552

    Article  Google Scholar 

  • Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transfer 125:567–574

    Article  Google Scholar 

  • Domingues G, Volz S, Joulain K, Greffet JJ (2005) Heat transfer between two nanoparticles through near field interaction. Phys Rev Lett 94:085901

    Article  Google Scholar 

  • Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720

    Article  Google Scholar 

  • Frusteri F, Leonardi V, Vasta S, Restuccia G (2005) Thermal conductivity measurement of a PCM based storage system containing carbon fibers. Appl Therm Eng 25:1623–1633

    Article  Google Scholar 

  • Hamada Y, Otsu W, Fukai J, Morozumi Y, Miyatake O (2005) Anisotropic heat transfer in composites based on high-thermal conductive carbon fibers. Energy 30:221–233

    Article  Google Scholar 

  • Hawlader MNA, Uddin MS, Khin MM (2003) Microencapsulated PCM thermal-energy storage system. Appl Energy 74:195–202

    Article  Google Scholar 

  • Hong T-K, Yang H-S, Choi CJ (2005) Study of the enhanced thermal conductivity of Fe nanofluids. J Appl Phys 97(6):1–4

    Google Scholar 

  • Hwang Y-J, Ahn Y-C, Shin H-S, Lee C-G, Kim G-T, Park H-S, Lee J-K (2005) Investigation on characteristics of thermal conductivity enhancement of nanofluids. Curr Appl Phys 6(6):1068-1071

    Article  Google Scholar 

  • Inaba H (2000) New challenge in advanced thermal energy transportation using functionally thermal fluids. Int J Therm 39:991–1003

    Article  Google Scholar 

  • Jang SP, Choi SUS (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84(21):4316–4318

    Article  Google Scholar 

  • Ju S, Li ZY (2006) Theory of thermal conductance in carbon nanotube composites. Phys Lett A 353:194–197

    Article  MathSciNet  Google Scholar 

  • Jwo CS, Teng TP, Hung CJ et al (2005) Research and development of measurement device for thermal conductivity of nanofluids. J Phys 13:55–58

    Google Scholar 

  • Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transfer 45(4):855–863

    Article  MATH  Google Scholar 

  • Kim DH, Ryu HW, Moon JH, Kim J (2006) Effect of ultrasonic treatment and temperature on nanocrystalline TiO2. J Power Source 1:196–200

    Google Scholar 

  • Lane GA (1980) Low temperature heat storage with phase change materials. Int J Ambient Energy 1:155–168

    MathSciNet  Google Scholar 

  • Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transfer 121:280–289

    Article  Google Scholar 

  • Li Q, Xuan YM (2002) Convective heat transfer and flow characteristics of Cu-water nanofluid. Sci China 45E:408–416

    Google Scholar 

  • Marin JM, Zalba B, Cabeza LF, Mehling H (2005) Improvement of a thermal energy storage using plates with paraffin-graphite composite. Int J Heat Mass Transfer 48:2561–2570

    Article  Google Scholar 

  • Maxwell JC (1881) A treatise on electricity and magnetism, vol 1, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Nan CW, Liu G, Lin Y, Li M (2004) Interface effect on thermal conductivity of carbon nanotube composites. Appl Phys Lett 85:3549–3551

    Article  Google Scholar 

  • Patel HE, Das SK, Sundararajan T, Sreekumaran NA, George B, Pradeep T (2003) Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett 83(14):2931–2933

    Article  Google Scholar 

  • Ryu HW, Woo SW, Shin BC, Kim SD (1992) Prevention of supercooling and stabilization of inorganic salt hydrates as latent heat storage materials. Solar Energy Mater Solar Cells 27:161–172

    Article  Google Scholar 

  • Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle–fluid mixture. J Thermophys Heat Transfer 13(4):474–480

    Article  Google Scholar 

  • Wang BX, Zhou LP, Peng XF (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transfer 46:2665–2672

    Article  MATH  Google Scholar 

  • Xiao M, Feng B, Gong K (2002) Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity. Energy Convers Manage 43:103–108

    Article  Google Scholar 

  • Xuan YM, Li Q, Hu W (2003) Aggregation structure and thermal conductivity of nanofluids. AIChE J 49:1038–1043

    Article  Google Scholar 

  • Xue QZ (2003) Model for effective thermal conductivity of nanofluids. Phys Lett A 307:313–317

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the Natural Science Foundation of Chongqing (Chongqing, China), as well as by the Doctoral Startup Foundation of Chongqing University (Chongqing, China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Dong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YD., Zhou, YG., Tong, MW. et al. Experimental study of thermal conductivity and phase change performance of nanofluids PCMs. Microfluid Nanofluid 7, 579 (2009). https://doi.org/10.1007/s10404-009-0423-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-009-0423-8

Keywords

Navigation