Skip to main content
Log in

Recent advances in microscale pumping technologies: a review and evaluation

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Micropumping has emerged as a critical research area for many electronics and biological applications. A significant driving force underlying this research has been the integration of pumping mechanisms in micro total analysis systems and other multi-functional analysis techniques. Uses in electronics packaging and micromixing and microdosing systems have also capitalized on novel pumping concepts. The present work builds upon a number of existing reviews of micropumping strategies by focusing on the large body of micropump advances reported in the very recent literature. Critical selection criteria are included for pumps and valves to aid in determining the pumping mechanism that is most appropriate for a given application. Important limitations or incompatibilities are also addressed. Quantitative comparisons are provided in graphical and tabular forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abdelgawad M, Hassan I, Esmail N, Phutthavong P (2005) Numerical investigation of multistage viscous micropump configurations. J Fluids Eng Trans ASME 127(4):734–742

    Google Scholar 

  • Al-Halhouli AT, Al-Salaymeh A, Kilani MI, Buttgenbach S (2007) Numerical investigation of the effect of spiral curvature on the flow field in a spiral channel viscous micropump. Microfluidics Nanofluidics 3(5):537–546

    Google Scholar 

  • Andersson H, Van den Berg A (2003) Microfluidic devices for cellomics: a review. Sensors Actuat B Chem 92(3):315

    Google Scholar 

  • Armani D, Liu C, Aluru N (1999) Re-configurable fluid circuits by PDMS elastomer micromachining. In: Proceedings of the IEEE micro electro mechanical systems (MEMS), Orlando, pp 222–227

  • Astle AA, Kim HS, Bernal LP, Najafi K, Washabaugh PD (2007) Theoretical and experimental performance of a high frequency gas micropump. Sensors Actuat A Phys 134(1):245–256

    Google Scholar 

  • Bahadur V, Garimella SV (2006) An energy-based model for electrowetting-induced droplet actuation. J Micromech Microeng 16(8):1494–1503

    Google Scholar 

  • Bahadur V, Garimella SV (2007) Electrowetting-based control of static droplet states on rough surfaces. Langmuir 23(9):4918–4924

    Google Scholar 

  • Baroud CN, Delville J-P, Wunenburger R (2005) Laser-actuated microfluidic building blocks. In: Proceedings of SPIE—the international society for optical engineering, optical trapping and optical micromanipulation II, San Diego, vol 5930, pp 1–8

  • Blanchard D, Ligrani P, Gale B (2005) Single-disk and double-disk viscous micropumps. Sensors Actuat A Phys 122(1 SPEC ISS):149–158

    Google Scholar 

  • Boden R, Lehto M, Simu U, Thornell G, Hjort K, Schweitz J-A (2006) A polymeric paraffin actuated high-pressure micropump. Sensors Actuat A Phys 127(1):88–93

    Google Scholar 

  • Brask A, Goranovic G, Jensen MJ, Bruus H (2005) A novel electro-osmotic pump design for nonconducting liquids: theoretical analysis of flow rate-pressure characteristics and stability. J Micromech Microeng 15(4):883–891

    Google Scholar 

  • Broderick SL, Webb BW, Maynes D (2005) Thermally developing electro-osmotic convection in microchannels with finite debye-layer thickness. Numer Heat Transfer A Appl 48(10):941–964

    Google Scholar 

  • Chang H-T, Lee C-Y, Wen C-Y (2007) Design and modeling of electromagnetic actuator in mems-based valveless impedance pump. Microsyst Technol 13(11–12):1615–1622

    Google Scholar 

  • Chen F, Li B, Sullivan TD, Gonzalez CL, Muzzy CD, Lee HK, Levy MD, Dashiell MW, Kolodzey J (2000) Influence of underlying interlevel dielectric films on extrusion formation in aluminum interconnects. J Vacuum Sci Technol B Microelectr Nanometer Struct 18(6):2826–2834

    Google Scholar 

  • Chen L, Wang H, Ma J, Wang C, Guan Y (2005a) Fabrication and characterization of a multi-stage electroosmotic pump for liquid delivery. Sensors Actuat B Chem 104(1):117–123

    Google Scholar 

  • Chen Z, Wang P, Chang H-C (2005b) An electro-osmotic micro-pump based on monolithic silica for micro-flow analyses and electro-sprays. Anal Bioanalyt Chem 382(3):817–824

    Google Scholar 

  • Chen SC, Cheng CH, Lin YC (2007) Analysis and experiment of a novel actuating design with a shear mode PZT actuator for microfluidic application. Sensors Actuat APhys 135(1):1–9

    Google Scholar 

  • Cozma A, Puers B (1995) Characterization of the electrostatic bonding of silicon and pyrex glass. J Micromech Microeng 5(2):98–102

    Google Scholar 

  • Cui Q, Liu C, Zha XF (2007) Study on a piezoelectric micropump for the controlled drug delivery system. Microfluidics Nanofluidics 3(4):377–390

    Google Scholar 

  • da Silva AK, Kobayashi MH, Coimbra CFM (2007) Optimal theoretical design of 2-D microscale viscous pumps for maximum mass flow rate and minimum power consumption. Int J Heat Fluid Flow 28(3):526–536

    Google Scholar 

  • Darabi J, Wang H (2005) Development of an electrohydrodynamic injection micropump and its potential application in pumping fluids in cryogenic cooling systems. J Microelectromech Syst 14(4):747–755

    Google Scholar 

  • Darabi J, Rada M, Ohadi M, Lawler J (2002) Design, fabrication, and testing of an electrohydrodynamic ion-drag micropump. J Microelectromech Syst 11(6):684–690

    Google Scholar 

  • Debesset S, Hayden CJ, Dalton C, Eijkel JCT, Manz A (2004) An AC electroosmotic micropump for circular chromatographic applications. Lab On A Chip 4:396–400

    Google Scholar 

  • Dissanayake DW, Tikka AC, Al-Sarawi SF, Abbott D (2007) Radio frequency controlled microvalve for biomedical applications. In: Proceedings of SPIE—the international society for optical engineering, Adelaide, Australia, 6413:64130D

  • Doll A, Heinrichs M, Goldschmidtboeing F, Schrag HJ, Hopt UT, Woias P (2006) A high performance bidirectional micropump for a novel artificial sphincter system. Sensors Actuat A Phys 130–131:445–453

    Google Scholar 

  • Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Analyt Chem 70(23):4974–4984

    Google Scholar 

  • Duwairi H, Abdullah M (2007) Thermal and flow analysis of a magneto-hydrodynamic micropump. Microsyst Technol 13(1):33–39

    Google Scholar 

  • Eddings MA, Gale BK (2006) A PDMS-based gas permeation pump for on-chip fluid handling in microfluidic devices. J Micromech Microeng 16(11):2396–2402

    Google Scholar 

  • Fan B, Song G, Hussain F (2005) Simulation of a piezoelectrically actuated valveless micropump. Smart Mater Struct 14(2):400–405

    Google Scholar 

  • Fang J, Wang K, Bohringer KF (2006) Self-assembly of PZT actuators for micropumps with high process repeatability. J Microelectromech Syst 15(4):871–878

    Google Scholar 

  • Faulkner D, Ward C, Gilbuena D, Shekarriz R, Forster FK (2006) Fixed valve piezoelectric micropump for miniature thermal management module. In: Proceedings of ASME fluids engineering division summer meeting 2006, FEDSM2006, Miami, vol 2, pp 843–848

  • Felten M, Geggier P, Jager M, Duschl C (2006) Controlling electrohydrodynamic pumping in microchannels through defined temperature fields. Phys Fluids 18(5):051707

    Google Scholar 

  • Feng G-H, Kim ES (2005) Piezoelectrically actuated dome-shaped diaphragm micropump. J Microelectromech Syst 14(2):192–199

    Google Scholar 

  • Fuhr G, Hagedorn R, Muller T, Benecke W, Wagner B (1992) Microfabricated electrohydrodynamic (EHD) pumps for liquids of higher conductivity. J Microelectromech Syst 1(3):141–146

    Google Scholar 

  • Gamboa AR, Morris CJ, Forster FK (2005) Improvements in fixed-valve micropump performance through shape optimization of valves. J Fluids Eng Trans ASME 127(2):339–346

    Google Scholar 

  • Garcia-Sanchez P, Ramos A, Green NG, Morgan H (2006) Experiments on AC electrokinetic pumping of liquids using arrays of microelectrodes. IEEE Trans Dielectrics Electrical Insulation 13(3):670–677

    Google Scholar 

  • Garimella SV, Singhal V (2004) Single-phase flow and heat transport and pumping considerations in microchannel heat sinks. Heat Transfer Eng 25(1):15–25

    Google Scholar 

  • Garimella SV, Singhal V, Liu D (2006) On-chip thermal management with microchannel heat sinks and integrated micropumps. Proc IEEE 94(8):1534–1548

    Google Scholar 

  • Geipel A, Doll A, Jantscheff P, Esser N, Massing U, Woias P, Goldschmidtboeing F (2007) A novel two-stage backpressure-independent micropump: modeling and characterization. J Micromech Microeng 17(5):949–959

    Google Scholar 

  • Go DB, Garimella SV, Fisher TS, Mongia RK (2007) Ionic winds for locally enhanced cooling. J Appl Phys 102(5):053302

    Google Scholar 

  • Goldschmidtboing F, Doll A, Heinrichs M, Woias P, Schrag HJ, Hopt UT (2005) A generic analytical model for micro-diaphragm pumps with active valves. J Micromech Microeng 15(4):673–683

    Google Scholar 

  • Good BT, Bowman CN, Davis RH (2007) A water-activated pump for portable microfluidic applications. J Colloid Interface Sci 305(2):239–249

    Google Scholar 

  • Goulpeau J, Trouchet D, Ajdari A, Tabeling P (2005) Experimental study and modeling of polydimethylsiloxane peristaltic micropumps. J Appl Phys 98(4):044914

    Google Scholar 

  • Grzybowski BA, Brittain ST, Whitesides GM (1999) Thermally actuated interferometric sensors based on the thermal expansion of transparent elastomeric media. Rev Sci Instrum 70(4):2031–2037

    Google Scholar 

  • Haeberle S, Schmitt N, Zengerle R, Ducree J (2007) Centrifugo-magnetic pump for gas-to-liquid sampling. Sensors Actuat A Phys 135(1):28–33

    Google Scholar 

  • Haik Y, Kilani M, Hendrix J, Rifai OA, Galambos P (2007) Flow field analysis in a spiral viscous micropump. Microfluidics Nanofluidics 3(5):527–535

    Google Scholar 

  • Hansen TS, West K, Hassager O, Larsen NB (2007) An all-polymer micropump based on the conductive polymer poly(3,4-ethylenedioxythiophene) and a polyurethane channel system. J Micromech Microeng 17(5):860–866

    Google Scholar 

  • Homsy A, Linder V, Lucklum F, de Rooij NF (2007) Magnetohydrodynamic pumping in nuclear magnetic resonance environments. Sensors and Actuat B Chem 123(1):636–646

    Google Scholar 

  • Hu JS, Chao CYH (2007) Numerical study of electroosmotic (EO) flow in microfabricated EO pump with overlapped electrical double layer (EDL). Int J Refrigeration 30(2):290–298

    Google Scholar 

  • Huang C-W, Lee G-B (2007) A microfluidic system for automatic cell culture. J Micromech Microeng 17(7):1266–1274

    MathSciNet  Google Scholar 

  • Huang C-W, Huang S-B, Lee G-B (2006a) Pneumatic micropumps with serially connected actuation chambers. J Micromech Microeng 16(11):2265–2272

    Google Scholar 

  • Huang S-C, Lee G-B, Chien F-C, Chen S-J, Chen W-J, Yang M-C (2006b) A microfluidic system with integrated molecular imprinting polymer films for surface plasmon resonance detection. J Micromech Microeng 16(7):1251–1257

    Google Scholar 

  • Hwang T, Popa D, Sin J, Stephanou HE, Leonard EM (2004) BCB wafer bonding for microfluidics. In: Proceedings of SPIE—the international society for optical engineering, micromachining and microfabrication process technology IX, San Jose, vol 5342, pp 82–191

  • Ilavsky J, Berndt CC (1998) Thermal expansion properties of metallic and cermet coatings. Surface Coatings Technol 102(1–2):19–24

    Google Scholar 

  • Inman W, Domansky K, Serdy J, Owens B, Trumper D, Griffith LG (2007) Design, modeling and fabrication of a constant flow pneumatic micropump. J Micromech Microeng 17(5):891–899

    Google Scholar 

  • Iverson BD, Maynes D, Webb BW (2004) Thermally developing electroosmotic convection in rectangular microchannels with vanishing Debye-layer thickness. J Thermophys Heat Transfer 18(4):486–493

    Google Scholar 

  • Izzo I, Accoto D, Menciassi A, Schmitt L, Dario P (2007) Modeling and experimental validation of a piezoelectric micropump with novel no-moving-part valves. Sensors Actuat A Phys 133(1):128–140

    Google Scholar 

  • Jang L-S, Li Y-J, Lin S-J, Hsu Y-C, Yao W-S, Tsai M-C, Hou C-C (2007) A stand-alone peristaltic micropump based on piezoelectric actuation. Biomed Microdevices 9(2):185–194

    Google Scholar 

  • Jeong OC, Park SW, Yang SS, Pak JJ (2005) Fabrication of a peristaltic PDMS micropump. Sensors Actuat A Phys 123–124:453

    Google Scholar 

  • Joo S, Chung TD, Kim HC (2007) A rapid field-free electroosmotic micropump incorporating charged microchannel surfaces. Sensors Actuat B Chem 123(2):1161–1168

    Google Scholar 

  • Jung J-Y, Kwak H-Y (2007) Fabrication and testing of bubble powered micropumps using embedded microheater. Microfluidics Nanofluidics 3(2):161–169

    Google Scholar 

  • Kang Y, Tan SC, Yang C, Huang X (2007) Electrokinetic pumping using packed microcapillary. Sensors Actuat A Phys 133(2):375–382

    Google Scholar 

  • Kilani MI, Al-Salaymeh A, Al-Halhouli AT (2006) Effect of channel aspect ratio on the flow performance of a spiral-channel viscous micropump. J Fluids Eng 128(3):618–627

    Google Scholar 

  • Kim J-H, Na K-H, Kang CJ, Kim Y-S (2005a) A disposable thermopneumatic-actuated micropump stacked with PDMS layers and ITO-coated glass. Sensors Actuat A Phys 120(2):365–369

    Google Scholar 

  • Kim YS, Kim JH, Na KH, Rhee K (2005b) Experimental and numerical studies on the performance of a polydimethylsiloxane valveless micropump. Proc Inst Mech Eng C J Mech Eng Sci 219(10):1139–1145

    Google Scholar 

  • Kim E-G, Oh J-G, Choi B (2006) A study on the development of a continuous peristaltic micropump using magnetic fluids. Sensors Actuat A Phys 128(1):43–51

    Google Scholar 

  • Kovacs GTA (1998) Micromachined transducers sourcebook. McGraw-Hill, Boston

    Google Scholar 

  • Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14(6):35–64

    Google Scholar 

  • Lee DE, Soper S, Wang W (2007) Fabrication of a microfluidic system with integrated electrochemical pump and valves. In: Proceedings of SPIE—the international society for optical engineering, San Jose, vol 6465, pp 64650B

  • Lee S, Kim KJ (2006) Design of IPMC actuator-driven valve-less micropump and its flow rate estimation at low Reynolds numbers. Smart Mater Struct 15(4):1103–1109

    Google Scholar 

  • Lee S, Kim KJ, Park HC (2005) Design and performance analysis of a novel IPMC-driven micropump, San Diego, vol 5759, pp 439–446

  • Lei KF, Law WC, Suen Y-K, Li WJ, Yam Y, Ho HP, Kong S-K (2007) A vortex pump-based optically-transparent microfluidic platform for biotech and medical applications. Proc Inst Mech Eng H J Eng Med 221(2):129–141

    Google Scholar 

  • Lin C-W, Jang J-Y (2005) 3D numerical micro-cooling analysis for an electrohydrodynamic micro-pump. Sensors Actuat A Phys 122(1 SPEC ISS):167–176

    Google Scholar 

  • Lin Q, Yang B, Xie J, Tai Y-C (2007) Dynamic simulation of a peristaltic micropump considering coupled fluid flow and structural motion. J Micromech Microeng 17(2):220–228

    Google Scholar 

  • Liu RH, Lodes MJ, Nguyen T, Siuda T, Slota M, Fuji HS, McShea A (2006a) Validation of a fully integrated microfluidic array device for influenza A subtype identification and sequencing. Anal Chem 78(12):4184–4193

    Google Scholar 

  • Liu RH, Nguyen T, Schwarzkopf K, Fuji HS, Petrova A, Siuda T, Peyvan K, Bizak M, Danley D, McShea A (2006b) Fully integrated miniature device for automated gene expression DNA microarray processing. Anal Chem 78(6):1980–1986

    Google Scholar 

  • Loverich J, Kanno I, Kotera H (2007) Single-step replicable microfluidic check valve for rectifying and sensing low Reynolds number flow. Microfluidics Nanofluidics 3(4):427–435

    Google Scholar 

  • Luginbuhl P, Collins SD, Racine GA, Gretillat MA, de Rooij NF, Brooks KG, Setter N (1998) Ultrasonic flexural Lamb-wave actuators based on PZT thin film. Sensors Actuat A Phys 64(1):41–49

    Google Scholar 

  • Machauf A, Nemirovsky Y, Dinnar U (2005) A membrane micropump electrostatically actuated across the working fluid. J Micromech Microeng 15(12):2309–2316

    Google Scholar 

  • Mahajan R, Chiu C-P, Chrysler G (2006) Cooling a microprocessor chip. Proc IEEE 94(8):1476–1486

    Google Scholar 

  • Maruo S, Inoue H (2006) Optically driven micropump produced by three-dimensional two-photon microfabrication. Appl Phys Lett 89(14):144101

    Google Scholar 

  • Matsumoto S, Maeda R, Klein A (1999) Characterization of a valveless micropump based on liquid viscosity. Microscale Thermophys Eng 3(1):31–42

    Google Scholar 

  • Matteucci M, Perennes F, Marmiroli B, Miotti P, Vaccari L, Gosparini A, Turchet A, Di Fabrizio E (2006) Compact micropumping system based on LIGA fabricated microparts. Microelectr Eng 83(4–9):1288–1290

    Google Scholar 

  • MatWeb (2007) MatWeb material property data in http://www.matweb.com/, accessed November 28, 2007

  • Melcher JR (1981) Continuum electromechanics. MIT Press, Cambridge

    Google Scholar 

  • MEMSnet (2007) MEMS and nanotechnology clearinghouse material index in http://www.memsnet.org/material/, accessed November 28, 2007

  • Moghaddam S, Ohadi MM (2005) Effect of electrode geometry on performance of an EHD thin-film evaporator. J Microelectromech Syst 14(5):978–986

    Google Scholar 

  • Morganti E, Fuduli I, Montefusco A, Petasecca M, Pignatel GU (2005) SPICE modelling and design optimization of micropumps. Int J Environ Anal Chem 85(9–11):687–698

    Google Scholar 

  • Mpholo M, Smith CG, Brown ABD (2003) Low voltage plug flow pumping using anisotropic electrode arrays. Sensors Actuat B Chem 92(3):262–268

    Google Scholar 

  • Mugele F, Baret J-C (2005) Electrowetting: from basics to applications. J Phys Condensed Matter 17(28):705–774

    Google Scholar 

  • Nagel JJ, Mikhail G, Noh H, Koo J (2006) Magnetically actuated micropumps using an Fe-PDMS composite membrane. In: Proceedings of SPIE—the international society for optical engineering, smart structures and materials 2006, San Diego, vol 6172, pp 617213

  • Nakano M, Katsura S, Touchard GG, Takashima K, Mizuno A (2007) Development of an optoelectrostatic micropump using a focused laser beam in a high-frequency electric field. IEEE Trans Ind Appl 43(1):232–237

    Google Scholar 

  • Nguyen N-T, Huang X (2005) Development of a peristaltic pump in printed circuit boards. J Micromechatronics 3(1):1–13

    Google Scholar 

  • Nguyen N-T, Meng AH, Black J, White RM (2000) Integrated flow sensor for in situ measurement and control of acoustic streaming in flexural plate wave micropumps. Sensors Actuat A Phys 79(2):115–121

    Google Scholar 

  • Nguyen N-T, Huang X, Chuan TK (2002) MEMS-micropumps: a review. J Fluids Eng Trans ASME 124(2):384–392

    Google Scholar 

  • Nguyen T-T, Goo NS, Yoon YS, Yoon KJ (2006) A novel lightweight piezo-composite actuator micropump. In: Proceedings of SPIE—the international society for optical engineering, smart structures and materials 2006, San Diego, vol 6172, pp 617212

  • Oberhammer J, Niklaus F, Stemme G (2003) Selective wafer-level adhesive bonding with benzocyclobutene for fabrication of cavities. Sensors Actuat A Phys 105(3):297–304

    Google Scholar 

  • Olesen LH, Bruus H, Ajdari A (2006) Ac electrokinetic micropumps: the effect of geometrical confinement, Faradaic current injection, and nonlinear surface capacitance. Phys Rev E 73(5):056313

    Google Scholar 

  • Pan T, McDonald SJ, Kai EM, Ziaie B (2005) A magnetically driven PDMS micropump with ball check-valves. J Micromech Microeng 15(5):1021–1026

    Google Scholar 

  • Patel V, Kassegne SK (2007) Electroosmosis and thermal effects in magnetohydrodynamic (MHD) micropumps using 3D MHD equations. Sensors Actuat B Chem 122(1):42–52

    Google Scholar 

  • Piyasena ME, Lopez GP, Petsev DN (2006) An electrokinetic cell model for analysis and optimization of electroosmotic microfluidic pumps. Sensors Actuat B Chem 113(1):461–467

    Google Scholar 

  • Samel B, Chretien J, Yue R, Griss P, Stemme G (2007a) Wafer-level process for single-use buckling-film microliter-range pumps. J Microelectromech Syst 16(4):795–801

    Google Scholar 

  • Samel B, Griss P, Stemme G (2007b) A thermally responsive PDMS composite and its microfluidic applications. J Microelectromech Syst 16(1):50–57

    Google Scholar 

  • SCS Coatings (2007) Parylene specifications and properties in http://www.scscoatings.com/parylene_knowledge/specifications.aspx, accessed November 28, 2007

  • Seyed-Yagoobi J (2005) Electrohydrodynamic pumping of dielectric liquids. J Electrostat 63(6–10):861–869

    Google Scholar 

  • Shin DD, Mohanchandra KP, Carman GP (2005) Development of hydraulic linear actuator using thin film SMA. Sensors Actuat A Phys 119(1):151–156

    Google Scholar 

  • Sim W, Oh J, Choi B (2006) Fabrication, experiment of a microactuator using magnetic fluid for micropump application. Microsyst Technol 12(12):1085–1091

    Google Scholar 

  • Singhal V, Garimella SV (2005a) Influence of bulk fluid velocity on the efficiency of electrohydrodynamic pumping. J Fluids Eng 127(3):484–494

    Google Scholar 

  • Singhal V, Garimella SV (2005b) A novel valveless micropump with electrohydrodynamic enhancement for high heat flux cooling. IEEE Trans Adv Packaging 28(2):216–230

    Google Scholar 

  • Singhal V, Garimella SV (2007) Induction electrohydrodynamics micropump for high heat flux cooling. Sensors Actuat A Phys 134(2):650–659

    Google Scholar 

  • Singhal V, Garimella SV, Murthy JY (2004a) Low Reynolds number flow through nozzle-diffuser elements in valveless micropumps. Sensors Actuat A Phys 113(2):226–235

    Google Scholar 

  • Singhal V, Garimella SV, Raman A (2004b) Microscale pumping technologies for microchannel cooling systems. Appl Mech Rev 57(1–6):191–221

    Google Scholar 

  • Song WH, Lichtenberg J (2005) Thermo-pneumatic, single-stroke micropump. J Micromech Microeng 15(8):1425–1432

    Google Scholar 

  • Stemme E, Stemme G (1993) Valveless diffuser/nozzle-based fluid pump. Sensors Actuat A Phys 39(2):159–167

    Google Scholar 

  • Su Y, Chen W, Cui F, Zhang W (2005) Analysis and fabrication process of an electromagnetically actuated valveless micropump with two parallel flexible diaphragms. Proc Inst Mech Eng C J Mech Eng Sci 219(9):1007–1014

    Google Scholar 

  • Suzuki H (2006) Stimulus-responsive gels: Promising materials for the construction of micro actuators and sensors. J Intell Mater Syst Struct 17(12):1091–1097

    Google Scholar 

  • Tang KC, Liao E, Ong WL, Wong JDS, Agarwal A, Nagarajan R, Yobas L (2006) Evaluation of bonding between oxygen plasma treated polydimethyl siloxane and passivated silicon. In: Journal of Physics: Conference Series, International MEMS Conference 2006, Singapore, vol 34, pp 155–161

  • Tesla N (1920) Valvular conduit. U.S. Patent No. 1,329,559

  • Tracey MC, Johnston ID, Davis JB, Tan CKL (2006) Dual independent displacement-amplified micropumps with a single actuator. J Micromech Microeng 16(8):1444–1452

    Google Scholar 

  • Truckenmuller R, Cheng Y, Ahrens R, Bahrs H, Fischer G, Lehmann J (2006) Micro ultrasonic welding: joining of chemically inert polymer microparts for single material fluidic components and systems. Microsyst Technol 12(10–11):1027–1029

    Google Scholar 

  • Urbanski JP, Thorsen T, Levitan JA, Bazant MZ (2006) Fast ac electro-osmotic micropumps with nonplanar electrodes. Appl Phys Lett 89(14):143508

    Google Scholar 

  • Vajandar SK, Xu D, Markov DA, Wikswo JP, Hofmeister W, Li D (2007) SiO2-coated porous anodic alumina membranes for high flow rate electroosmotic pumping. Nanotechnology 18(27):275705

    Google Scholar 

  • Vijendran S, Smith CG, Mpholo MI (2006) Multi-directional electrokinetic pumping for efficient transport and mixing in biochip applications. In: Proceedings of SPIE—the international society for optical engineering, microfluidics, biomems, and medical microsystems IV, San Jose, vol 6112, pp 61120

  • Wallis G, Pomerantz DI (1969) Field assisted glass-metal sealing. J Appl Phys 40(10):3946–3949

    Google Scholar 

  • Woias P (2005) Micropumps—past, progress and future prospects. Sensors Actuat B Chem 105(1):28–38

    Google Scholar 

  • Wolff A, Perch-Nielsen IR, Larsen UD, Friis P, Goranovic G, Poulsen CR, Kuttera JP, Telleman P (2003) Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter. Lab On A Chip 3(1):22

    Google Scholar 

  • Wu J (2006) Biased AC electro-osmosis for on-chip bioparticle processing. IEEE Trans Nanotechnol 5(2):84–88

    Google Scholar 

  • Wu J, Lian M, Yang K (2007) Micropumping of biofluids by alternating current electrothermal effects. Appl Phys Lett 90(23):234103

    Google Scholar 

  • Xu T-B, Su J (2005) Development, characterization, and theoretical evaluation of electroactive polymer-based micropump diaphragm. Sensors Actuat A (Physical) 121(1):267–274

    Google Scholar 

  • Yamahata C, Chastellain M, Parashar VK, Petri A, Hofmann H, Gijs MAM (2005a) Plastic micropump with ferrofluidic actuation. J Microelectromech Syst 14(1):96–102

    Google Scholar 

  • Yamahata C, Lacharme F, Burri Y, Gijs MAM (2005b) A ball valve micropump in glass fabricated by powder blasting. Sensors Actuat B Chem 110(1):1–7

    Google Scholar 

  • Yamahata C, Lotto C, Al-Assaf E, Gijs MAM (2005c) A PMMA valveless micropump using electromagnetic actuation. Microfluidics Nanofluidics 1(3):197–207

    Google Scholar 

  • Yang S-Y, Hsiung S-K, Hung Y-C, Chang C-M, Liao T-L, Lee G-B (2006) A cell counting/sorting system incorporated with a microfabricated flow cytometer chip. Meas Sci Technol 17(7):2001–2009

    Google Scholar 

  • Yin Z, Prosperetti A (2005a) ‘Blinking bubble’ micropump with microfabricated heaters. J Micromech Microeng 15(9):1683–1691

    Google Scholar 

  • Yin Z, Prosperetti A (2005b) A microfluidic ‘blinking bubble’ pump. J Micromech Microeng 15(3):643–651

    Google Scholar 

  • Yokota K, Sato K, Itoh M (2006) Model experiment, numerical simulation and theoretical analysis on the characteristics of a viscous micropump using a cylindrical rotor in a rectangular duct. JSME Int J Ser B Fluids Thermal Eng 49(2):393–400

    Google Scholar 

  • Yoon JS, Choi JW, Lee IH, Kim MS (2007) A valveless micropump for bidirectional applications. Sensors Actuat A Phys 135(2):833–838

    Google Scholar 

  • Yufeng S, Wenyuan C, Feng C, Weiping Z (2006) Electro-magnetically actuated valveless micropump with two flexible diaphragms. Int J Adv Manufact Technol 30(3–4):215–220

    Google Scholar 

  • Yun K-S, Cho I-J, Bu J-U, Kim C-J, Yoon E (2002) A surface-tension driven micropump for low-voltage and low-power operations. J Microelectromech Syst 11(5):454–461

    Google Scholar 

  • Zeng S, Chen CH, Mikkelsen JC Jr, Santiago JG (2001) Fabrication and characterization of electroosmotic micropumps. Sensors Actuat B Chem 79(2–3):107

    Google Scholar 

  • Zengerle R, Richter A, Sandmaier H (1992) A micro membrane pump with electrostatic actuation. In: Proceedings of the IEEE Micro Electro Mechanical Systems Workshop, Travemuende, Germany, pp 19–24

  • Zhang HJ, Qiu CJ (2006) Characterization and MEMS application of low temperature TiNi(Cu) shape memory thin films. Mater Sci Eng A 438–440:1106–1109

    Google Scholar 

  • Zhang T, Wang Q-M (2005) Valveless piezoelectric micropump for fuel delivery in direct methanol fuel cell (DMFC) devices. J Power Sources 140(1):72–80

    Google Scholar 

  • Zhang C, Xing D, Li Y (2007) Micropumps, microvalves, and micromixers within PCR microfluidic chips: advances and trends. Biotechnol Adv 25(5):483–514

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support for this work from members of the Cooling Technologies Research Center (http://www.ecn.purdue.edu/CTRC), a National Science Foundation Industry/University Cooperative Research Center at Purdue University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh V. Garimella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iverson, B.D., Garimella, S.V. Recent advances in microscale pumping technologies: a review and evaluation. Microfluid Nanofluid 5, 145–174 (2008). https://doi.org/10.1007/s10404-008-0266-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-008-0266-8

Keywords

Navigation