Skip to main content
Log in

Glass reflow on 3-dimensional micro-apertures for electrophysiological measurements on-chip

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We propose a new method to fabricate micro-apertures for on-chip electrophysiological measurements of living cells. Thermal reflow of phosphosilicate glass (PSG) is applied to funnel- or nozzle-type microstructures to generate very smooth surfaces on the finalized chip. Such 3-dimensional microstructures show close similarities to fire-polished glass pipette tips. Immobilized cells fit perfectly to these structures offering a large contact area for sealing between the cell membrane and the oxide surface. A tight cell/chip-aperture seal is an important requirement for the present application. We demonstrate the formation of stable gigaseals with Chinese hamster ovary (CHO) cells for both types of microstructures without the need of any post-fabrication surface treatment. By adjusting the PSG reflow parameters, the shape of the apertures can be modified and diameters down to the sub-micrometer range may be achieved. The application of PSG reflow to MEMS fabrication is an interesting new option to create unconventional microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams AC, Capio CD (1981) Planarization of phosphorus-doped silicon dioxide. J Electrochem Soc 128:423–429

    Article  Google Scholar 

  • Ashcroft FM (2000) Ion chanels and disease: channelopathies. Academic, San Diego

    Google Scholar 

  • Asmild M et al (2003) Upscaling and automation of electrophysiology: toward high throughput screening in ion channel drug discovery. Receptors Channels 9:49–58

    Article  Google Scholar 

  • Bennett PB, Guthrie HRE (2003) Trends in ion channel drug discovery: advances in screening technologies. Trends Biotechnol 21:563–569

    Article  Google Scholar 

  • Bruggemann A et al (2003) High quality ion channel analysis on a chip with the NPC (c) technology. Assay Drug Dev Technol 1:665–673

    Article  Google Scholar 

  • Comley J (2003) Patchers versus screeners—divergent opinion on high throughput electro-physiology. Drug Discovery World: (Fall) 47–57

  • Hamill OP et al (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Archiv 391:85–100

    Article  Google Scholar 

  • Hara T, Suzuki H, Furukawa M (1984) Reflow of PSG layers by halogen lamp short duration heating technique. Jpn J Appl Phys Part 2 Lett 23:L452–L454

    Article  Google Scholar 

  • Ionescu-Zanetti C et al (2005) Mammalian electrophysiology on a microfluidic platform. Proc Natl Acad Sci USA 102:9112–9117

    Article  Google Scholar 

  • Jansen H et al (1995) The black silicon method—a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control. J Micromech Microeng 5:115–120

    Article  Google Scholar 

  • Klemic KG et al (2002) Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells. Biosens Bioelectron 17:597–604

    Article  Google Scholar 

  • Klemic KG, Klemic JF, Sigworth FJ (2005) An air-molding technique for fabricating PDMS planar patch-clamp electrodes. Pflugers Archiv 449:564–572

    Article  Google Scholar 

  • Lehnert T, Gijs M (2004) Patch-clamp microsystems. In: Andersson H, van de Berg A (eds) Lab on chips for cellomics. Kluwer, Dordrecht

    Google Scholar 

  • Lehnert T et al (2002) Realization of hollow SiO2 micronozzles for electrical measurements on living cells. Appl Phys Lett 81:5063–5065

    Article  Google Scholar 

  • Lehnert T, Laine A, Gijs M (2003) Surface modification of SiO2 micro-nozzles for patch-clamp measurements on-chip. In: Proceedings of 7th international conference on micro total analysis systems, Squaw Valley, California, USA, Transducers Research Foundation

  • Luginbuhl P et al (2000) Femtoliter injector for DNA mass spectrometry. Sens Actuators B Chem 63:167–177

    Article  Google Scholar 

  • Netzer R et al (2001) Screening lead compounds for QT interval prolongation. Drug Discov Today 6:78–84

    Article  Google Scholar 

  • Pantoja R et al (2004) Silicon chip-based patch-clamp electrodes integrated with PDMS microfluidics. Biosens Bioelectron 20:509–517

    Article  Google Scholar 

  • Sakmann B, Neher E (1995) Single-channel recording. Plenum Press, New York

    Google Scholar 

  • Schroeder K et al (2003) IonWorks (TM) HT: a new high-throughput electrophysiology measurement platform. J Biomol Screen 8:50–64

    Article  Google Scholar 

  • Sigworth FJ, Klemic KG (2005) Microchip technology in ion-channel research. IEEE Trans Nanobioscience 4:121–127

    Article  Google Scholar 

  • van Stiphout P et al (2005) 3D microfluidic chip for automated patch-clamping VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V., Berlin

  • Vassiliev VY et al (2000) Properties and gap-fill capability of HPD-CVD phosphosilicate glass films for subquarter-micrometer ULSI device technology. Electrochem Solid State Lett 3:80–83

    Article  Google Scholar 

  • Wang XB, Li M (2003) Automated electrophysiology: high throughput of art. Assay Drug Dev Technol 1:695–708

    Article  Google Scholar 

  • Willumsen NJ et al (2003) High throughput electrophysiology: new perspectives for ion channel drug discovery. Receptors Channels 9:3–12

    Article  Google Scholar 

  • Wood C, Williams C, Waldron GJ (2004) Patch clamping by numbers. Drug Discov Today 9:434–441

    Article  Google Scholar 

  • Worley JF, Main MJ (2002) An industrial perspective on utilizing functional ion channel assays for high throughput screening. Receptors Channels 8:269–282

    Article  Google Scholar 

  • Xu J et al (2001) Ion-channel assay technologies: quo vadis? Drug Discov Today 6:1278–1287

    Article  Google Scholar 

  • Xu J et al (2003) A benchmark study with SealChip (TM) planar patch-clamp technology. Assay Drug Dev Technol 1:675–684

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. J.-D. Horisberger (Department of Pharmacology and Toxicology, UNIL, CH-Lausanne) for stimulating discussions on issues related to the patch-clamp technique. The authors also thank the EPFL Center of MicroNano Technology (EPFL-CMI), in particular Dr. C. Hibert (dry etching) and Dr. Ph. Langlet (PSG deposition) for help in the process development, as well as Dr. D. Bouvet (EPFL-LEG1, chemical–mechanical polishing) and J. Steen (EPFL-LMIS1, AFM measurements).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Lehnert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehnert, T., Nguyen, D.M.T., Baldi, L. et al. Glass reflow on 3-dimensional micro-apertures for electrophysiological measurements on-chip. Microfluid Nanofluid 3, 109–117 (2007). https://doi.org/10.1007/s10404-006-0111-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-006-0111-x

Keywords

Navigation