Skip to main content
Log in

The gastric parietal cell: at home and abroad

Die Belegzelle des Magens: diametrale Bedeutung für die gastroösophageale Refluxkrankheit (GERD)

  • Review
  • Published:
European Surgery Aims and scope Submit manuscript

Zusammenfassung

GRUNDLAGEN: Die Parietal-(Beleg-)zelle besitzt große Bedeutung für die Verdauung und bietet ein gutes Model für spezialisierte biologische Prozesse. METHODIK: Dies ist eine Übersicht zur Physiologie der Parietal-(Beleg-)zelle und ihre diametrale Bedeutung für die gastroösophageale Refluxkrankheit (GERD). ERGEBNISSE: Die verschiedenen Funktionszustände der Parietalzelle in Ruhe und Sekretion erklären komplexe biologische Prozesse (intrazelluläres Zellmembran Recycling) und die Expression der H,K-ATPase auf der Zelloberfläche. Dazu sind aufwendige Umformungen des Zellskeletts mit Vergrößerung der Zelloberfläche notwendig. Hierbei spielt das Zellskelett Protein Ezrin eine große Bedeutung. Die Protein/Glykoprotein-Struktur der H,K-ATPase scheint dafür zu sorgen, dass sich der Magen nicht selbst verdaut. Der Ösophagus (Plattenepithel) besitzt keine ausreichenden Mechanismen, sich gegen die Verdauung durch Magen und Duodenalsaft zu wehren. Interessanterweise führt Reflux (GERD) zu "magenartigen" Mukosatypen: oxyntocardia Mukosa (OCM) und intestinale Metaplasie mit Becherzellen. Während Letztere ein signifikantes malignes Entartungsrisiko (Adenokarzinom) besitzt, scheint dies bei OCM nicht vorzuliegen. SCHLUSSFOLGERUNGEN: Mechanismen, welche die Zylinderzellmetaplasie und Dysplasie des Ösophagus mediieren, besitzen Ähnlichkeit mit Veränderungen, welche zu atropher Gastritis und Metaplasie des Magens führen (Adenokarziomrisiko).

Summary

BACKGROUND: The gastric parietal cell (also called oxyntic cell) is a remarkable physiological entity in view of its regulation and participation in digestion, but also as an exemplary model for its exaggerated biophysical and cell biological processes. Moreover, the ability to pharmacologically control parietal cell activity has proven enormous value in treating a number of pathological conditions. METHODS: This review summarizes what is known about some of the most important physiological activities of the gastric parietal cell. RESULTS: Clues from differences in phenotype between resting and actively secreting cells provide a morphological basis for the massive biological process of intracellular membrane recycling, and explain the regulation by recruitment of the primary proton pump, H,K-ATPase, to the secretory surface. The large changes in membrane surface area require the sub-structural support of the filamentous actin cytoskeleton, which together with a dynamic membrane-cytoskeleton linker protein, known as ezrin, offer the scaffold for large membrane elaborations as well as required plasticity of the resulting microvillar extensions. Studies on basic protein/glycoprotein structure of H,K-ATPase have offered autoprotective mechanisms for the proton pump, and suggest the possibility that similar features in other gastric apical surface proteins may provide a molecular basis to why the stomach does not digest itself. An adjacent anatomical area, the esophagus, does not have the power to resist autodigestion resulting from backflux of gastric (and duodenal) juices; this is the pathological condition called gastroesophageal reflux disease, GERD. Interestingly, GERD related metaplastic changes in the distal esophageal epithelium ultimately result in one of two epithelial phenotypes: one called cardio-oxyntic mucosa, rarely leading to more serious consequences; and the other intestinal mucosa, characterized by goblet cells and having increased probability for progression to dysplasia and adenocarcinoma. CONCLUSIONS: Factors that promote lower esophageal metaplasia and dysplasia have interesting similarities with atrophic gastritis and glandular metaplasia of the gastric mucosa, i.e., intestinalization indicative of adenocarcinoma. These comparisons are discussed for the parietal cell in an unusual environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Ammar DA, Zhou R, Forte JG, Yao X. Syntaxin 3 is required for cAMP-induced acid secretion: streptolysin O-permeabilized gastric gland model. Am J Physiol 2002;282:G23–33

    CAS  Google Scholar 

  • Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K, Parker AR, Shimada Y, Eshleman JR, Watkins DN, Beachy PA. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 2003;425:846–51

    Article  PubMed  CAS  Google Scholar 

  • Black JA, Forte TM, Forte JG. Structure of oxyntic cell membranes during conditions of rest and secretion of HCl as revealed by freeze-fracture. Anat Rec 1980;196:163–72

    Article  PubMed  CAS  Google Scholar 

  • Bredemeyer AJ, Geahlen JH, Weis VG, Huh WJ, Zinselmeyer BH, Srivatsan S, Miller MJ, Shaw AS, Mills JC. The gastric epithelial progenitor cell niche and differentiation of the zymogenic (chief) cell lineage. Dev Biol 2009;325:211–24

    Article  PubMed  CAS  Google Scholar 

  • Bretscher A. Regulation of cortical structure by the ezrin-radixin-moesin protein family. Curr Opin Cell Biol 1999;11: 109–16

    Article  PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL. Receptor-mediated endocytosis: insights from the lipoprotein receptor system. Proc Natl Acad Sci USA 1979;76:3330–7

    Article  PubMed  CAS  Google Scholar 

  • Card WI, Marks IN. The relationship between the acid output of the stomach following "maximal" histamine stimulation and the parietal cell mass. Clin Sci 1960;19:147–63

    PubMed  CAS  Google Scholar 

  • Carlson N, Lechago J, Richter J, Sampliner RE, Peterson L, Santella RM, Goldblum JR, Falk GW, Ertan A, Younes M. Acid suppression therapy may not alter malignant progression in Barrett's metaplasia showing p53 protein accumulation. Am J Gastroenterol 2002;97:1340–5

    Article  PubMed  CAS  Google Scholar 

  • Cavanagh RL, Usakewicz JJ, Buyniski JP. A comparison of some of the pharmacological properties of etintidine, a new histamine H2-receptor antagonist, with those of cimetidine, ranitidine and tiotidine. J Pharmacol Exp Ther 1983;224:171–9

    PubMed  CAS  Google Scholar 

  • Chandrasoma P. Controversies of the cardiac mucosa and Barrett's oesophagus. Histopathology 2005;46:361–73

    Article  PubMed  CAS  Google Scholar 

  • Chandrasoma P, Makarewicz K, Wickramasinghe K, Ma Y, Demeester T. A proposal for a new validated histological definition of the gastroesophageal junction. Hum Pathol 2006;37:40–7

    Article  PubMed  Google Scholar 

  • Chandrasoma PT. Diagnostic atlas of gastroesophageal reflux disease – A new histology-based method. pp 1–24, 2007

  • Chen J, Doctor RB, Mandel LJ. Cytoskeletal dissociation of ezrin during renal anoxia: role in microvillar injury. Am J Physiol 1994;267:C784–95

    PubMed  CAS  Google Scholar 

  • Cheng FC, Lam SK, Ong GB. Maximum acid output to graded doses of pentagastrin and its relation to parietal cell mass in Chinese patients with duodenal ulcer. Gut 1977;18:827–32

    Article  PubMed  CAS  Google Scholar 

  • Chew CS. Cholecystokinin, carbachol, gastrin, histamine, and forskolin increase [Ca2+]I in gastric glands. Am J Physiol 1986;250:G814–23

    PubMed  CAS  Google Scholar 

  • Chew CS. Parietal cell protein kinases. Selective activation of type I cAMP-dependent protein kinase by histamine. J Biol Chem 1985;260:7540–50

    PubMed  CAS  Google Scholar 

  • Chew CS, Brown MR. Release of intracellular Ca2+ and elevation of inositol trisphosphate by secretagogues in parietal and chief cells isolated from rabbit gastric mucosa. Biochim Biophys Acta 1986;888:116–25

    Article  PubMed  CAS  Google Scholar 

  • Chow DC, Browning CM, Forte JG. Gastric H(+)-K(+)-ATPase activity is inhibited by reduction of disulfide bonds in beta-subunit. Am J Physiol 1992;263:C39–46

    PubMed  CAS  Google Scholar 

  • Chow DC, Forte JG. Functional significance of the beta-subunit for heterodimeric P-type ATPases. J Exp Biol 1995;198:1–17

    PubMed  CAS  Google Scholar 

  • Chu S, Tanaka S, Kaunitz JD, Montrose MH. Dynamic regulation of gastric surface pH by luminal pH. J Clin Invest 1999;103:605–12

    Article  PubMed  CAS  Google Scholar 

  • Colleypriest BJ, Ward SG, Tosh D. How does inflammation cause Barrett's metaplasia? Curr Opin Pharmacol 2009;9: 721–6

    Article  PubMed  CAS  Google Scholar 

  • Creighton TE. Proteins–structure and molecular properties. 2nd ed. New York: W.H. Freeman & Co.; 1993

    Google Scholar 

  • Crothers JM Jr, Asano S, Kimura T, Yoshida A, Wong A, Kang JW, Forte JG. Contribution of oligosaccharides to protection of the H,K-ATPase beta-subunit against trypsinolysis. Electrophoresis 2004;25:2586–92

    Article  PubMed  CAS  Google Scholar 

  • Cushman SW, Wardzala LJ. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem 1980;255:4758–62

    PubMed  CAS  Google Scholar 

  • Daly MJ, Humphray JM, Bunce KT, Stables R. The effect of ranitidine on gastric acid secretory response curves to histamine, pentagastrin or bethanechol in the dog with a Heidenhain pouch. Agents Actions 1981;11:160–4

    Article  PubMed  CAS  Google Scholar 

  • Dard N, Louvet-Vallee S, Santa-Maria A, Maro B. Phosphorylation of ezrin on threonine T567 plays a crucial role during compaction in the mouse early embryo. Dev Biol 2004;271: 87–97

    Article  PubMed  CAS  Google Scholar 

  • Davenport HW. The gastric mucosal barrier: past, present, and future. Mayo Clin Proc 1975;50:507–14

    PubMed  CAS  Google Scholar 

  • DeMeester SR, Campos GM, DeMeester TR, Bremner CG, Hagen JA, Peters JH, Crookes PF. The impact of an antireflux procedure on intestinal metaplasia of the cardia. Ann Surg 1998;228:547–56

    Article  PubMed  CAS  Google Scholar 

  • Dimmler A, Brabletz T, Hlubek F, Hafner M, Rau T, Kirchner T, Faller G. Transcription of sonic hedgehog, a potential factor for gastric morphogenesis and gastric mucosa maintenance, is up-regulated in acidic conditions. Lab Invest 2003;83:1829–37

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald RC. Molecular basis of Barrett's oesophagus and oesophageal adenocarcinoma. Gut 2006;55:1810–20

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald RC, Onwuegbusi BA, Bajaj-Elliott M, Saeed IT, Burnham WR, Farthing MJ. Diversity in the oesophageal phenotypic response to gastro-oesophageal reflux: immunological determinants. Gut 2002;50:451–9

    Article  PubMed  CAS  Google Scholar 

  • Forte JG, Forte GM, Saltman P. K+ -stimulated phosphatase of microsomes from gastric mucosa. J Cell Physiol 1967;69: 293–304

    Article  PubMed  CAS  Google Scholar 

  • Forte JG, Ganser A, Beesley R, Forte TM. Unique enzymes of purified microsomes from pig fundic mucosa. K+ -stimulated adenosine triphosphatase and K+ -stimulated pNPPase. Gastroenterology 1975;69:175–89

    PubMed  CAS  Google Scholar 

  • Forte JG, Zhu L. Apical recycling of the gastric parietal cell H-K-ATPase. Ann Rev Physiol 2010;72:21–44

    Article  CAS  Google Scholar 

  • Forte TM, Machen TE, Forte JG. Ultrastructural changes in oxyntic cells associated with secretory function: a membrane-recycling hypothesis. Gastroenterology 1977;73:941–55

    PubMed  CAS  Google Scholar 

  • Friedenberg FK, Hanlon A, Vanar V, Nehemia D, Mekapati J, Nelson DB, Richter JE. Trends in gastroesophageal reflux disease as measured by the National Ambulatory Medical Care Survey. Dig Dis Sci, 2009 Oct 15 [Epub ahead of print]

  • Ganser AL, Forte JG. K+ -stimulated ATPase in purified microsomes of bullfrog oxyntic cells. Biochim Biophys Acta 1973;307:169–80

    Article  PubMed  CAS  Google Scholar 

  • Gautreau A, Louvard D, Arpin M. Morphogenic effects of ezrin require a phosphorylation-induced transition from oligomers to monomers at the plasma membrane. J Cell Biol 2000;150: 193–203

    Article  PubMed  CAS  Google Scholar 

  • Hanson GL, Schilling WP, Michael LH. Sodium-potassium pump and sodiumcalcium exchange in adult and neonatal canine cardiac sarcolemma. Am J Physiol 1993;264:H320–6

    PubMed  CAS  Google Scholar 

  • Helander HF, Hirschowitz BI. Quantitative ultrastructural studies on gastric parietal cells. Gastroenterology 1972;63: 951–61

    PubMed  CAS  Google Scholar 

  • Hu Y, Jones C, Gellersen O, Williams VA, Watson TJ, Peters JH. Pathogenesis of Barrett esophagus: deoxycholic acid up-regulates goblet-specific gene MUC2 in concert with CDX2 in human esophageal cells. Arch Surg 2007;142:540–4; discussion 545–4

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Williams VA, Gellersen O, Jones C, Watson TJ, Peters JH. The pathogenesis of Barrett's esophagus: secondary bile acids upregulate intestinal differentiation factor CDX2 expression in esophageal cells. J Gastrointest Surg 2007;11:827–34

    Article  PubMed  Google Scholar 

  • Huo X, Zhang HY, Zhang X, Lynch JP, Strauch ED, Wang JY, Melton SD, Genta RM, Wang DH, Spechler SJ, Souza RF. Acid and bile salt induced CDX2 expression differs in squamous cells from patients with and without Barrett's esophagus. Gastroenterology 2010 Mar 17. [Epub ahead of print]

  • Hussain SP, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer 2007;121:2373–80

    Article  PubMed  CAS  Google Scholar 

  • Ismail-Beigi F, Pressley TA, Haber RS, Gick GG, Loeb JN, Edelman IS. Kinetic analysis of Na,K-activated adenosine triphosphatase induced by low external K+ in a rat liver cell line. J Biol Chem 1988;263:8162–67

    PubMed  CAS  Google Scholar 

  • Isomoto H, Inoue K, Kohno S. Interleukin-8 levels in esophageal mucosa and longterm clinical outcome of patients with reflux esophagitis. Scand J Gastroenterol 2007;42:410–11

    Article  PubMed  Google Scholar 

  • Isomoto H, Nishi Y, Wang A, Takeshima F, Omagari K, Mizuta Y, Shikuwa S, Murata I, Kohno S. Mucosal concentrations of proinflammatory cytokines and chemokines at gastric cardia: implication of Helicobacter pylori infection and gastroesophageal reflux. Am J Gastroenterol 2004;99: 1063–8

    Article  PubMed  CAS  Google Scholar 

  • Isomoto H, Saenko VA, Kanazawa Y, Nishi Y, Ohtsuru A, Inoue K, Akazawa Y, Takeshima F, Omagari K, Miyazaki M, Mizuta Y, Murata I, Yamashita S, Kohno S. Enhanced expression of interleukin-8 and activation of nuclear factor kappa-B in endoscopynegative gastroesophageal reflux disease. Am J Gastroenterol 2004;99:589–97

    Article  PubMed  CAS  Google Scholar 

  • Isomoto H, Wang A, Mizuta Y, Akazawa Y, Ohba K, Omagari K, Miyazaki M, Murase K, Hayashi T, Inoue K, Murata I, Kohno S. Elevated levels of chemokines in esophageal mucosa of patients with reflux esophagitis. Am J Gastroenterol 2003;98: 551–6

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Schofield GC. Studies on the depletion and accumulation of microvilli and changes in the tubulovesicular compartment of mouse parietal cells in relation to gastric acid secretion. J Cell Biol 1974;63:364–82

    Article  PubMed  CAS  Google Scholar 

  • Karvar S, Yao X, Crothers JM Jr, Liu Y, Forte JG. Localization and function of soluble N-ethylmaleimide-sensitive factor attachment protein-25 and vesicle-associated membrane protein-2 in functioning gastric parietal cells. J Biol Chem 2002; 277:50030–5

    Article  PubMed  CAS  Google Scholar 

  • Karvar S, Yao X, Duman JG, Hybiske K, Liu Y, Forte JG. Intracellular distribution and functional importance of vesicle-associated membrane protein 2 in gastric parietal cells. Gastroenterology 2002;123:281–90

    Article  PubMed  CAS  Google Scholar 

  • Karvar S, Zhu L, Crothers J Jr, Wong W, Turkoz M, Forte JG. Cellular localization and stimulation-associated distribution dynamics of syntaxin-1 and syntaxin-3 in gastric parietal cells. Traffic 2005;6:654–66

    Article  PubMed  CAS  Google Scholar 

  • Kasbekar DK, Ridley HA, Forte JG. Pentagastrin and acetylcholine relation to histamine in H+ secretion by gastric mucosa. Am J Physiol 1969;216:961–7

    PubMed  CAS  Google Scholar 

  • Katoh Y, Katoh M. Hedgehog signaling pathway and gastric cancer. Cancer Biol Ther 2005;4:1050–4

    Article  PubMed  CAS  Google Scholar 

  • Kauer WK, Peters JH, DeMeester TR, Ireland AP, Bremner CG, Hagen JA. Mixed reflux of gastric and duodenal juices is more harmful to the esophagus than gastric juice alone. The need for surgical therapy re-emphasized. Ann Surg 1995;222:525–31; discussion 531–23

    PubMed  CAS  Google Scholar 

  • Kazumori H, Ishihara S, Kinoshita Y. Roles of caudal-related homeobox gene Cdx1 in oesophageal epithelial cells in Barrett's epithelium development. Gut 2009;58:620–8

    Article  PubMed  CAS  Google Scholar 

  • Konturek SJ. Gastric secretion – from Pavlov's nervism to Popielski's histamine as direct secretagogue of oxyntic glands. J Physiol Pharmacol 2003;54(Suppl 3):43–68

    PubMed  Google Scholar 

  • Leedham SJ, Brittan M, McDonald SA, Wright NA. Intestinal stem cells. J Cell Mol Med 2005;9:11–24

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Ding X, Wang D, Deng H, Feng M, Wang M, Yu X, Jiang K, Ward T, Aikhionbare F, Guo Z, Forte JG, Yao X. A mechanism of Munc18b-syntaxin 3-SNAP25 complex assembly in regulated epithelial secretion. FEBS letters 2007;581:4318–24

    Article  PubMed  CAS  Google Scholar 

  • Morrow DJ, Avissar NE, Toia L, Redmond EM, Watson TJ, Jones C, Raymond DP, Litle V, Peters JH. Pathogenesis of Barrett's esophagus: bile acids inhibit the Notch signaling pathway with induction of CDX2 gene expression in human esophageal cells. Surgery 2009;146:714–21; discussion 721–12

    Article  PubMed  Google Scholar 

  • Negulescu PA, Reenstra WW, Machen TE. Intracellular Ca requirements for stimulus-secretion coupling in parietal cell. Am J Physiol 1989;256:C241–51

    PubMed  CAS  Google Scholar 

  • Nielsen CM, Williams J, van den Brink GR, Lauwers GY, Roberts DJ. Hh pathway expression in human gut tissues and in inflammatory gut diseases. Lab Invest 2004;84: 1631–42

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuki H, Okabe S. Effects of ranitidine, a new histamine H2-receptor antagonist, on secretagogue-stimulated gastric secretion in Heidenhain pouch dogs (author's transl). Nippon Yakurigaku Zasshi 1981;78:539–47

    PubMed  CAS  Google Scholar 

  • Orlando RC. Pathophysiology of gastroesophageal reflux disease. J Clin Gastroenterol 2008;42:584–8

    Article  PubMed  Google Scholar 

  • Peng DF, Razvi M, Chen H, Washington K, Roessner A, Schneider-Stock R, El-Rifai W. DNA hypermethylation regulates the expression of members of the Mu-class glutathione S-transferases and glutathione peroxidases in Barrett's adenocarcinoma. Gut 2009;58:5–15

    Article  PubMed  CAS  Google Scholar 

  • Peters JH, Avisar N. The molecular pathogenesis of Barrett's esophagus: common signaling pathways in embryogenesis metaplasia and neoplasia. J Gastrointest Surg 2010;14 (Suppl 1):S81–7

    Article  PubMed  Google Scholar 

  • Pohl H, Welch HG. The role of overdiagnosis and reclassification in the marked increase of esophageal adenocarcinoma incidence. J Natl Cancer Inst 2005;97:142–6

    Article  PubMed  Google Scholar 

  • Prasad GA, Bansal A, Sharma P, Wang KK. Predictors of progression in Barrett's esophagus: current knowledge and future directions. Am J Gastroenterol 2010 Jan 26. [Epub ahead of print]

  • Prinz C, Zanner R, Gratzl M. Physiology of gastric enterochromaffin-like cells. Annu Rev Physiol 2003;65:371–82

    Article  PubMed  CAS  Google Scholar 

  • Ramalho-Santos M, Melton DA, McMahon AP. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 2000;127:2763–72

    PubMed  CAS  Google Scholar 

  • Rieder F, Biancani P, Harnett KM, Yerian LM, Falk GW. Inflammatory mediators in gastroesophageal reflux disease (GERD): impact on esophageal motility, fibrosis and carcinogenesis. Am J Physiol Gastrointest Liver Physiol 2010;298(5):G571–81, Epub 2010 Mar 18

    Article  PubMed  CAS  Google Scholar 

  • Rogler G, Andus T. Cytokines in inflammatory bowel disease. World J Surg 1998;22:382–9

    Article  PubMed  CAS  Google Scholar 

  • Sandvik AK, Marvik R, Dimaline R, Waldum HL. Carbachol stimulation of gastric acid secretion and its effects on the parietal cell. Br J Pharmacol 1998;124:69–74

    Article  PubMed  CAS  Google Scholar 

  • Schofield GC, Ito S, Bolender RP. Changes in membrane surface areas in mouse parietal cells in relation to high levels of acid secretion. J Anat 1979;128:669–92

    PubMed  CAS  Google Scholar 

  • Shin JM, Munson K, Vagin O, Sachs G. The gastric HK-ATPase: structure, function, and inhibition. Pflugers Arch 2009;457:609–22

    Article  PubMed  CAS  Google Scholar 

  • Shiotani A, Iishi H, Uedo N, Ishiguro S, Tatsuta M, Nakae Y, Kumamoto M, Merchant JL. Evidence that loss of sonic hedgehog is an indicator of Helicobater pyloriinduced atrophic gastritis progressing to gastric cancer. Am J Gastroenterol 2005;100:581–7

    Article  PubMed  CAS  Google Scholar 

  • Shiotani A, Uedo N, Iishi H, Tatsuta M, Ishiguro S, Nakae Y, Kamada T, Haruma K, Merchant JL. Re-expression of sonic hedgehog and reduction of CDX2 after Helicobacter pylori eradication prior to incomplete intestinal metaplasia. Int J Cancer 2007;121:1182–9

    Article  PubMed  CAS  Google Scholar 

  • Silberg DG, Furth EE, Taylor JK, Schuck T, Chiou T, Traber PG. CDX1 protein expression in normal, metaplastic, and neoplastic human alimentary tract epithelium. Gastroenterology 1997;113:478–86

    Article  PubMed  CAS  Google Scholar 

  • Silberg DG, Sullivan J, Kang E, Swain GP, Moffett J, Sund NJ, Sackett SD, Kaestner KH. Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology 2002;122:689–96

    Article  PubMed  CAS  Google Scholar 

  • Smith JB, Wade MB, Fineberg NS, Weinberger MH. Influence of race, sex, and blood pressure on erythrocyte sodium transport in humans. Hypertension 1988;12:251–8

    PubMed  CAS  Google Scholar 

  • Sollner TH, Rothman JE. Molecular machinery mediating vesicle budding, docking and fusion. Experientia 1996;52: 1021–5

    Article  PubMed  CAS  Google Scholar 

  • Suh E, Chen L, Taylor J, Traber PG. A homeodomain protein related to caudal regulates intestine-specific gene transcription. Mole Cell Biol 1994;14:7340–51

    CAS  Google Scholar 

  • Sui G, Bonde P, Dhara S, Broor A, Wang J, Marti G, Feldmann G, Duncan M, Montgomery E, Maitra A, Harmon JW. Epidermal growth factor receptor and hedgehog signaling pathways are active in esophageal cancer cells from rat reflux model. J Surg Res 2006;134:1–9

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Kono T. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc Natl Acad Sci USA 1980;77: 2542–5

    Article  PubMed  CAS  Google Scholar 

  • Tanford C. Steady state of an ATP-driven calcium pump: limitations on kinetic and thermodynamic parameters. Proc Natl Acad Sci USA 1982;79:6161–5

    Article  PubMed  CAS  Google Scholar 

  • Thangarajah H, Wong A, Chow DC, Crothers JM Jr, Forte JG. Gastric H-KATPase and acid-resistant surface proteins. Am J Physiol 2002;282:G953–61

    CAS  Google Scholar 

  • Tsukamoto T, Inada K, Tanaka H, Mizoshita T, Mihara M, Ushijima T, Yamamura Y, Nakamura S, Tatematsu M. Down-regulation of a gastric transcription factor, Sox2, and ectopic expression of intestinal homeobox genes, Cdx1 and Cdx2: inverse correlation during progression from gastric/intestinal-mixed to complete intestinal metaplasia. J Cancer Res Clin Oncol 2004;130:135–45

    Article  PubMed  CAS  Google Scholar 

  • Turunen O, Wahlstrom T, Vaheri A. Ezrin has a COOH-terminal actin-binding site that is conserved in the ezrin protein family. J Cell Biol 1994;126:1445–53

    Article  PubMed  CAS  Google Scholar 

  • Tyagarajan K, Lipniunas PH, Townsend RR, Forte JG. The N-linked oligosaccharides of the beta-subunit of rabbit gastric H,K-ATPase: site localization and identification of novel structures. Biochemistry 1997;36:10200–12

    Article  PubMed  CAS  Google Scholar 

  • Uesaka T, Kageyama N, Watanabe H. Identifying target genes regulated downstream of Cdx2 by microarray analysis. J Mol Biol 2004;337:647–60

    Article  PubMed  CAS  Google Scholar 

  • Vallbohmer D, DeMeester SR, Peters JH, Oh DS, Kuramochi H, Shimizu D, Hagen JA, Danenberg KD, Danenberg PV, DeMeester TR, Chandrasoma PT. Cdx-2 expression in squamous and metaplastic columnar epithelia of the esophagus. Dis Esophagus 2006;19:260–6

    Article  PubMed  CAS  Google Scholar 

  • van den Brink GR. Hedgehog signaling in development and homeostasis of the gastrointestinal tract. Physiol Rev 2007; 87:1343–75

    Article  PubMed  CAS  Google Scholar 

  • van den Brink GR, Hardwick JC, Nielsen C, Xu C, ten Kate FJ, Glickman J, van Deventer SJ, Roberts DJ, Peppelenbosch MP. Sonic hedgehog expression correlates with fundic gland differentiation in the adult gastrointestinal tract. Gut 2002; 51:628–33

    Article  PubMed  CAS  Google Scholar 

  • van den Brink GR, Hardwick JC, Tytgat GN, Brink MA, Ten Kate FJ, Van Deventer SJ, Peppelenbosch MP. Sonic hedgehog regulates gastric gland morphogenesis in man and mouse. Gastroenterology 2001;121:317–28

    Article  PubMed  CAS  Google Scholar 

  • Wade JB, Stetson DL, Lewis SA. ADH action: evidence for a membrane shuttle mechanism. Ann NY Acad Sci 1981; 372:106–17

    Article  PubMed  CAS  Google Scholar 

  • Watkins DN, Peacock CD. Hedgehog signalling in foregut malignancy. Biochem Pharmacol 2004;68:1055–60

    Article  PubMed  CAS  Google Scholar 

  • Yoshida N, Uchiyama K, Kuroda M, Sakuma K, Kokura S, Ichikawa H, Naito Y, Takemura T, Yoshikawa T, Okanoue T. Interleukin-8 expression in the esophageal mucosa of patients with gastroesophageal reflux disease. Scand J Gastroenterol 2004;39:816–22

    Article  PubMed  CAS  Google Scholar 

  • Zhou R, Zhu L, Kodani A, Hauser P, Yao X, Forte JG. Phosphorylation of ezrin on threonine 567 produces a change in secretory phenotype and repolarizes the gastric parietal cell. J Cell Sci 2005;118:4381–91

    Article  PubMed  CAS  Google Scholar 

  • Zhu L, Hatakeyama J, Chen C, Shastri A, Poon K, Forte JG. Comparative study of ezrin phosphorylation among different tissues: more is good; too much is bad. Am J Physiol Cell Physiol 2008;295:C192–202

    Article  PubMed  CAS  Google Scholar 

  • Zhu L, Zhou R, Mettler S, Wu T, Abbas A, Delaney J, Forte JG. High turnover of ezrin T567 phosphorylation: conformation, activity, and cellular function. Am J Physiol Cell Physiol 2007;293:C874–84

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Forte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forte, J. The gastric parietal cell: at home and abroad. Eur Surg 42, 134–148 (2010). https://doi.org/10.1007/s10353-010-0539-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10353-010-0539-9

Schlüsselwörter

Keywords

Navigation