Skip to main content

Advertisement

Log in

Large gryphaeid oysters as habitats for numerous sclerobionts: a case study from the northern Red Sea

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The shell of a living specimen of the Indo-Pacific gryphaeid giant oyster Hyotissa hyotis was colonized by numerous encrusting, boring, nestling and baffling taxa which show characteristic distribution patterns. On the upper valve, sponge-induced bioerosion predominates. On the lower valve intergrowth of chamid bivalves and thick encrusting associations—consisting mostly of squamariacean and corallinacean red algae, acervulinid foraminifera, and scleractinian corals—provides numerous microhabitats for nestling arcid and mytilid bivalves as well as for encrusting bryozoans and serpulids. Such differences between exposed and cryptic surfaces are typical for many marine hard substrata and result from the long-term stable position of the oyster on the seafloor. The cryptic habitats support a species assemblage of crustose algae and foraminifera that, on exposed surfaces, would occur in much deeper water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bieler R, Mikkelsen PM, Lee T, Ó Foighil D (2004) Discovery of the Indo-Pacific oyster Hyotissa hyotis (Linnaeus, 1758) in the Florida Keys (Bivalvia: Gryphaeidae). Moll Res 24:149–159

    Article  Google Scholar 

  • Bordeaux YL, Brett CE (1990) Substrate specific associations of epibionts on Middle Devonian brachiopods: implications for paleoecology. Hist Biol 4:221–224

    Article  Google Scholar 

  • Brett CE (1988) Paleoecology and evolution of marine hard substrate communities: an overview. Palaios 3:374–378

    Article  Google Scholar 

  • Crame JA (1986) Late Pleistocene molluscan assemblages from the coral reefs of the Kenya coast. Coral Reefs 4:183–196

    Article  Google Scholar 

  • Dodd RJ, Stanton RJ Jr (1990) Paleoecology: concepts and applications. Wiley, New York, pp 1–502

    Google Scholar 

  • Fabricius K, De’ath G (2001) Environmental factors associated with the spatial distribution of crustose coralline algae on the Great Barrier Reef. Coral Reefs 19:303–309

    Article  Google Scholar 

  • Fagerstrom JA (1987) The evolution of reef communities. Wiley, New York, 600 pp

    Google Scholar 

  • Foster MS (2001) Rhodoliths: between rocks and soft places. J Phycol 37:659–667

    Article  Google Scholar 

  • Goreau TF, Goreau NI, Yonge CM (1973) On the utilization of photosynthetic products from zooxanthellae and of a dissolved amino acid in Tridacna maxima f. elongata (Mollusca: Bivalvia). J Zool 169:417–454

    Google Scholar 

  • Gutiérrez JL, Jones CG, Strayer DL, Iribarne OO (2003) Molluscs as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101:79–90

    Article  Google Scholar 

  • Hadfield MG (1976) Molluscs associated with living tropical corals. Micronesica 12:133–148

    Google Scholar 

  • Hadfield MG, Kay EA, Gillette MU, Lloyd MC (1972) The Vermetidae (Mollusca: Gastropoda) of the Hawaiian Islands. Mar Biol 12:81–98

    Google Scholar 

  • Hay ME (1981) Herbivory, algal distribution, and the maintenance of between-habitat diversity on a tropical fringing reef. Am Nat 118:520–540

    Article  Google Scholar 

  • Head SM (1978) A cerioid species of Blastomussa (Cnidaria, Scleractinia) from the central Red Sea, with a revision of the genus. J Nat Hist 12:633–639

    Article  Google Scholar 

  • Hughes RN, Lewis AH (1974) On the spatial distribution, feeding and reproduction of the vermetid gastropod Dendropoma maximum. J Zool 172:531–547

    Article  Google Scholar 

  • Hutchings PA (1986) Biological destruction of coral reefs. Coral Reefs 4:239–252

    Article  Google Scholar 

  • Jackson JBC, Winston JE (1982) Ecology of cryptic coral reef communities. I. Distribution and abundance of major groups of encrusting organisms. J Exp Mar Biol Ecol 57:135–147

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak SM (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Kappner I, Al-Moghrabi SM, Richter C (2000) Mucus-net feeding by the vermetid gastropod Dendropoma maxima in coral reefs. Mar Ecol Prog Ser 204:309–313

    Google Scholar 

  • Kidwell SM, Gyllenhal ED (1998) Symbiosis, competition, and physical disturbance in the growth histories of Pliocene cheilostome bryoliths. Lethaia 31:221–239

    Article  Google Scholar 

  • Kleemann K (1996) Biocorrosion by bivalves. PSZN Mar Ecol 17:145–158

    Google Scholar 

  • Lee DE, Scholz J, Gordon DP (1997) Paleoecology of a late Eocene mobile rockground biota from Otago, New Zealand. Palaios 12:568–581

    Article  Google Scholar 

  • Leighton LR (1998) Constraining functional hypotheses: controls on the morphology of the concavo-convex brachiopod Rafinesquina. Lethaia 31:293–307

    Article  Google Scholar 

  • Lescinsky HL (1995) The life orientation of concavo-convex brachiopods: overturning the paradigm. Paleobiol 21:520–551

    Google Scholar 

  • Martindale W (1992) Calcified epibionts as palaeoecological tools: examples from the Recent and Pleistocene reefs of Barbados. Coral Reefs 11:167–177

    Article  Google Scholar 

  • Morton B (1983) Coral-associated bivalves of the Indo-Pacific. In: Russel-Hunter WD (ed) The Mollusca, vol 6, Ecology. Academic, New York, pp 139–224

    Google Scholar 

  • Nebelsick JH, Schmid B, Stachowitsch M (1997) The encrustation of fossil and recent sea-urchin tests: ecological and taphonomic significance. Lethaia 30:271–284

    Article  Google Scholar 

  • Palmer TJ, Fürsich FT (1974) The ecology of a Middle Jurassic hardground and crevice fauna. Palaeontol 17:507–524

    Google Scholar 

  • Perry CT (1998) Macroborers within coral framework at Discovery Bay, north Jamaica: species distribution and abundance, and effects on coral preservation. Coral Reefs 17:277–287

    Article  Google Scholar 

  • Piller WE, Pervesler P (1989) The Northern Bay of Safaga (Red Sea, Egypt): an actuopalaeontological approach. I. Topography and bottom facies. Beitr Paläont Österr 15:103–147

    Google Scholar 

  • Rasser M, Piller WE (1997) Depth distribution of calcareous encrusting associations in the northern Red Sea (Safaga, Egypt) and their geological implications. Proc 8th Int Coral Reef Symp 1:743–748

    Google Scholar 

  • Reiss Z, Hottinger L (1984) The Gulf of Aqaba: ecological micropaleontology. Springer, Berlin, vol 8, 354 pp

  • Richter C, Wunsch M, Rasheed M, Kötter I, Badran MI (2001) Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413:726–730

    Article  Google Scholar 

  • Riedl R (1966) Biologie der Meereshöhlen: Topographie, Faunistik und Ökologie eines unterseeischen Lebensraumes. Parey, Hamburg, Germany, 636 pp

  • Riegl B, Piller WE (1997) Distribution and environmental control of coral assemblages in Northern Safaga Bay (Red Sea, Egypt). Facies 36:141–162

    Article  Google Scholar 

  • Sheppard CRC, Sheppard ALS (1991) Corals and coral communities of Arabia. Fauna Saudi Arabia 12:170

    Google Scholar 

  • Slack-Smith SM (1998) Order Ostreoida. In: Beesley PL, Ross GJB, Wells A (eds) Mollusca: the southern synthesis. Fauna of Australia. vol 5. Part A. CSIRO, Melbourne, pp 268–282

  • Stachowitsch M (1980) The epibiotic and endolithic species associated with the gastropod shells inhabited by the hermit crabs Paguristes oculatus and Pagurus cuanensis. PSZN Mar Ecol 1:73–101

    Google Scholar 

  • Stenzel HB (1971) Oysters. In: Moore RC (ed) Treatise on invertebrate paleontology, Part N, Mollusca 6, Bivalvia, vol 3. Kansas Univ Press, Lawrence, KS, USA, pp 953–1124

  • Surlyk F, Christensen WK (1974) Epifaunal zonation on an Upper Cretaceous rocky coast. Geology 2:529–534

    Article  Google Scholar 

  • Taylor PD, Wilson MA (2002) A new terminology for marine organisms inhabiting hard substrates. Palaios 17:522–525

    Google Scholar 

  • Taylor PD, Wilson MA (2003) Palaeoecology and evolution of marine hard substrate communities. Earth Sci Rev 62:1–103

    Article  Google Scholar 

  • Veron J (2000a) Corals of the world, vol 3. Australian Institute of Marine Science, Townsville, 489 pp

  • Veron J (2000b) Corals of the world, Vol. 1. Australian Institute of Marine Science, Townsville, 463 pp

  • Voight JR, Walker SE (1995) Geographic variation of shell bionts in the deep-sea snail Gaza. Deep-Sea Res Part I 42:1261–1271

    Article  Google Scholar 

  • Zuschin M, Oliver PG (2003a) Bivalves and bivalve habitats in the northern Red Sea. The Northern Bay of Safaga (Red Sea, Egypt): an actuopalaeontological approach. VI. Bivalvia. Naturhistorisches Museum, Vienna, 304 pp

  • Zuschin M, Oliver PG (2003b) Fidelity of molluscan life and death assemblages on sublittoral hard substrata around granitic islands of the Seychelles. Lethaia 36:133–149

    Article  Google Scholar 

  • Zuschin M, Piller WE (1997) Gastropod shells recycled: an example from a rocky tidal flat in the northern Red Sea. Lethaia 30:127–134

    Article  Google Scholar 

  • Zuschin M, Stachowitsch M (2007) The distribution of molluscan assemblages and their postmortem fate on coral reefs in the Gulf of Aqaba (northern Red Sea). Mar Biol (in press). Available online. http://www.springerlink.com/content/r7t5l732u2585664/ . Cited 26 April 2007

  • Zuschin M, Hohenegger J, Steininger FF (2000) A comparison of living and dead molluscs on coral reef associated hard substrata in the northern Red Sea: implications for the fossil record. Palaeogeogr Palaeoclimatol Palaeoecol 159:167–190

    Article  Google Scholar 

  • Zuschin M, Hohenegger J, Steininger FF (2001) Molluscan assemblages on coral reefs and associated hard substrata in the northern Red Sea. Coral Reefs 20:107–116

    Article  Google Scholar 

  • Zuschin M, Stachowitsch M, Pervesler P, Kollmann H (1999) Structural features and taphonomic pathways of a high-biomass epifauna in the northern Gulf of Trieste, Adriatic Sea. Lethaia 32:299–317

    Article  Google Scholar 

Download references

Acknowledgements

Abbas Mansour, Werner Piller and Michael Rasser helped with fieldwork. Thanks are due to Karl Kleemann, Graham Oliver, Michael Rasser and Michael Stachowitsch for helpful discussions. Karl Kleemann and Norbert Vavra assisted with species identifications. The review of Franz T. Fürsich improved the mansuscript. Financial support was provided by FWF project P10715Geo to F.F. Steininger and by project H-140/2000 of the Hochschuljubiläumsstiftung der Stadt Wien to M. Zuschin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Zuschin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuschin, M., Baal, C. Large gryphaeid oysters as habitats for numerous sclerobionts: a case study from the northern Red Sea. Facies 53, 319–327 (2007). https://doi.org/10.1007/s10347-007-0110-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-007-0110-8

Keywords

Navigation