Skip to main content
Log in

Predicting seasonal and spatial variations in diet quality of Pyrenean chamois (Rupicapra pyrenaica pyrenaica) using near infrared reflectance spectroscopy

  • Short Communication
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

Monitoring nutritional status of wildlife is key to understanding the population response to changes in food availability. Several direct and indirect methods have been proposed for such purposes, but faecal nitrogen (FN) is by far the most commonly used indirect non-invasive indicator of free-ranging ruminant diet quality. In this work, two methods were used to estimate the FN content in 291 pellet samples of Pyrenean chamois (Rupicapra pyrenaica pyrenaica) collected during a 2-year period (May 2009 to May 2011) in two chamois populations from the Catalan Pyrenees, Spain: the Dumas LECO analyzer and near-infrared reflectance spectroscopy (NIRS). In order to optimize further FN estimations we performed three different NIRS calibrations: (1) general, across year, season and populations; (2) population-specific; and (3) season-specific, i.e., different periods of vegetation growth. FN ranged from 1.66 % to 2.85 % (dry matter basis) and was higher in the main vegetation growing season than in winter. Concerning NIRS calibration, our study confirmed that FN of Pyrenean chamois can be accurately determined by NIRS, since the general calibration was accurate enough to predict FN. It is concluded that NIRS represents a non-destructive, emission-free and low-cost analytical technique which may reduce the use of conventional laborious methods for estimating FN in long-term wildlife monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Aldezabal A, García-González R (2004) La alimentación del sarrio en el Pirineo central. In: Herrero J, Escudero E, de Luco DF, García-González R (eds) El sarrio pirenaico Rupicapra p. pyrenaica: Biología, Patología y Gestión. Consejo de Protección de la Naturaleza de Aragón, Zaragoza, pp 169–189

    Google Scholar 

  • Alonso E, Igarzabal A, Oregui LM, Mandaluniz N (2005) Estimación del contenido de nitrógeno en heces de rumiantes mediante espectroscopia en el infrarrojo cercano (NIRS). XLV Reunión Científica de la Sociedad Española para el Estudio de los Pastos. Universidad de Oviedo, Gijón, Spain, pp 89–96

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag, New York, USA

    Google Scholar 

  • Crampe JP, Gerard JF, Bon R, Serrano E, Caens P, Florence E, Gonzalez G (2007) Site fidelity, migratory behaviour, and spatial organization of female isards (Rupicapra pyrenaica) in the Pyrenees National Park, France. Can J Zool 85:16–25

    Article  Google Scholar 

  • Dixon R, Coates D (2009) Review: Near infrared spectroscopy of faeces to evaluate the nutrition and physiology of herbivores. JNIRS 17:1–31

    CAS  Google Scholar 

  • Foley WJ, McIlwee A, Lawler I, Aragones L, Woolnough AP, Berding N (1998) Ecological applications of near infrared reflectance spectroscopy a tool for rapid, cost-effective prediction of the composition of plant and animal tissues and aspects of animal performance. Oecologia 116:293–305

    Article  Google Scholar 

  • García-González R, Cuartas P (1996) Trophic utilization of a montane/subalpine forest by chamois (Rupicapra pyrenaica) in the Central Pyrenees. For Ecol Manage 88:15–23

    Article  Google Scholar 

  • Gómez D (2008) Aspectos ecológicos de los pastos. In: Fillat F, García-González R, Gómez D, Reiné R (eds) Pastos del Pirineo. CSIC, Diputación de Huesca, Madrid, pp 61–74

    Google Scholar 

  • Hibert F, Maillard D, Fritz H, Garel M, Abdou HN, Winterton P (2011) Ageing of ungulate pellets in semi-arid landscapes: how the shade of colour can refine pellet-group counts. Eur J Wildl Res 57:495–503

    Article  Google Scholar 

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108

    Article  PubMed  Google Scholar 

  • Kamler J, Homolka M, Cizmár D (2004) Suitability of NIRS for estimating diet quality of free-living red deer, Cervus elaphus, and roe deer, Capreolus capreolus. Wildl Biol 10:235–240

    Google Scholar 

  • Kamler J, Homolka M (2005) Fecal nitrogen: a potential indicator of red and roe deer diet quality in forest habitats. Fool Zool 54:89–98

    Google Scholar 

  • Leite ER, Stuth JW (1994) Technical note: influence of duration of exposure to field conditions on viability of fecal samples for NIRS analysis. J Range Manage 47:312

    Article  Google Scholar 

  • Leslie DM, Bowyer RT, Jenks JA (2008) Facts from feces: nitrogen still measures up as a nutritional index for mammalian herbivores. J Wildl Manage 72:1420–1433

    Article  Google Scholar 

  • Li H, Tolleson D, Stuh J, Bai K, Mo F, Kronberg S (2007) Faecal near infrared reflectance spectroscopy to predict diet quality for sheep. Small Rumin Res 68:263–268

    Article  Google Scholar 

  • López-Olvera JR, Marco I, Montané J, Lavín S (2006) Haematological and serum biochemical values of Southern chamois (Rupicapra pyrenaica) captured by drive-net. Vet Rec 158:479–484

    Article  PubMed  Google Scholar 

  • Lyons RK, Stuth JW (1992) Fecal NIRS equations for predicting diet quality of free-ranging cattle. J Range Manage 45:238–244

    Article  Google Scholar 

  • Lyons RK, Stuth JW, Angerer JP (1995) Technical note: fecal NIRS equation field validation. J Range Manage 48:380–382

    Article  Google Scholar 

  • Marinas A, García-González R, Fondevila M (2003) The nutritive value of five species occurring in the summer grazing ranges of the Pyrenees. Anim Sci 76:461–469

    Google Scholar 

  • Mattson WJJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161

    Article  Google Scholar 

  • Navarro-González N, Verheyden H, Hoste H, Cargnelutti B, Lourtet B, Merlet J, Daufresne T, Lavín S, Hewison AJM, Morland S, Serrano E (2011) Diet quality and immunocompetence influence parasite load of roe deer in a fragmented landscape. Eur J Wildl Res 57:639–645

    Article  Google Scholar 

  • Orskov ER (1982) Protein nutrition in ruminants. Academic Press, San Diego, CA, USA

    Google Scholar 

  • Parker KL, Barboza PS, Gillingham MP (2009) Nutrition integrates environmental responses of ungulates. Funct Ecol 23:57–69

    Article  Google Scholar 

  • Pérez JM, González FJ, Granados JE, Pérez MC, Fandos P, Soriguer RC, Serrano E (2003) Hematological and biochemical reference intervals for Spanish ibex. J Wildl Dis 39:209–215

    PubMed  Google Scholar 

  • R Development Core Team 2.15.1 (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://wwwR-projectorg, accessed 30/09/2012

  • Raymond WF (1948) Evaluation of herbage for grazing. Nature 161:937–945

    Article  Google Scholar 

  • Robbins CT, Van Soest PJ, Mautz WW, Moen AN (1975) Feed analyses and digestion with reference to white-tailed deer. J Wildl Manage 39:67–79

    Article  Google Scholar 

  • Serrano E, Granados JE, Sarasa M, González FJ, Fandos P, Soriguer RC, Pérez JM (2011) The effects of winter severity and population density on body stores in the Iberian wild goat (Capra pyrenaica) in a highly seasonal mountain environment. Eur J Wildl Res 57:25–55

    Article  Google Scholar 

  • Serrano E, González FJ, Granados JE, Moço G, Fandos P, Soriguer RC, Pérez JM (2008) The use of total serum proteins and triglycerides for monitoring body condition in the Iberian wild goat (Capra pyrenaica). J Zoo Wild Med 39:646–649

    Article  Google Scholar 

  • Tolleson DR, Stuth JW, Williams K (2004) Determination of fecal nitrogen and phosphorus in herbivores via near infrared reflectance spectroscopy. In: Proceedings of the Society of Range Management meeting, Salt Lake City, UT, USA, 24–30 January

  • Schneider BH (1935) The subdivision of the metabolic nitrogen in the faeces of the rat, swine and man. J Biol Chem 109:249–278

    CAS  Google Scholar 

  • Showers SE, Tolleson DR, Stuth JW, Kroll JC, Koerth B (2006) Predicting diet quality of white-tailed deer via NIRS fecal profiling. Range Ecol Manage 59:300–307

    Article  Google Scholar 

  • Vigo J, Carrera J, Ferré A (2006) Manual dels hàbitats de Catalunya. Vol. VI. boscos. Departament de Medi Ambient i Habitatge. Generalitat de Catalunya, Barcelona, Spain

    Google Scholar 

  • Williams PC, Sobering DC (1996) How do we do it?: a brief summary of the methods we use in developing near infrared calibrations. In: Davies AMC, Willians P C (eds) Near infrared spectroscopy: the future waves, NIR Publications, Chichester, UK, pp 185–188

  • Wood S (2006) Generalized additive models: and introduction with R. CEC Statistic, Boca Raton, FL, USA

    Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extension in ecology with R. Springer, New York, USA

    Book  Google Scholar 

Download references

Acknowledgements

We thank Mr. Jordi Xifra of the National Game Reserve of Freser-Setcases and all the gamekeepers of the Cos d’Agents Rurals, for their support during the Pyrenean chamois population monitoring. A. Gálvez-Cerón was supported by an Erasmus Mundus program from de European Commission (E2NHANCE project), N. Navarro-González and L. Fernández-Sirera by the FPU program from the Ministerio de Educación, Spain, and E. Serrano by the Beatriu de Pinós programme (BP-DGR 2011) of the Catalan Science and Technology System, Spain. This study was conducted with financial support from Banco Bilbao Vizcaya Foundation (BIOCON08-059) and the project CGL 2009-11631 of the MICINN (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Serrano.

Additional information

Communicated by P. Acevedo

Electronic supplementary material

Below is the link to the electronic supplementary material.

S1

Full list of references used in Table 1. (DOC 55 kb)

S2

Descriptive statistics of samples for both calibration and validation equations for estimating FN and linear regressions between FN and NIRS predicted values. (DOC 777 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gálvez-Cerón, A., Serrano, E., Bartolomé, J. et al. Predicting seasonal and spatial variations in diet quality of Pyrenean chamois (Rupicapra pyrenaica pyrenaica) using near infrared reflectance spectroscopy. Eur J Wildl Res 59, 115–121 (2013). https://doi.org/10.1007/s10344-012-0672-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10344-012-0672-9

Keywords

Navigation