Skip to main content

Advertisement

Log in

Functional analysis of vegetation on alpine treeline ecotone in the Julian and Kamnik-Savinja Alps in Slovenia

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Our study focused on the functional aspects of plant species and vegetation at the transition from larch (Larix decidua Mill.) forest to mountain pine (Pinus mugo Turra) stands on the alpine treeline ecotone. With increasing elevation, living conditions grow harsher, which is reflected in the plant species and functional trait composition of plant communities. At four different localities in the Slovenian Alps, relevés along an altitudinal gradient and according to vegetation type were made (European larch forests, larch trees-mountain pine shrubs, mountain pine shrubs), using standard Central European phytocoenological method. In the upper mountain pine belt, few differential species were found, since most species represented in mountain pine stands also occurred in the lower two vegetation belts, while there were many differential species in the lower forest belt. Species with considerable competitive ability and moderate stress tolerance dominated the upper treeline ecotone, whereas ruderality is poorly expressed. The importance of stress tolerance in plant strategies increased slightly in the mountain pine belt. Changes in the representation of some functional traits attributes were detected by vegetation belts, but complete species turnover did not occur. Changes in dominant life form involved greater cover of chamaephytes and nanophanerophytes in the upper mountain pine belt. Species with evergreen leaves dominated mountain pine stands and deciduous forest stands. The share of species with scleromorphic leaves increased in the direction of the mountain pine belt while the share of species with mesomorphic and hygromorphic leaves declined. Mountain pine stands create good conditions for the regeneration of tree species and colonisation by ecologically more demanding forest species while species of alpine grasslands withdraw on open areas. Since today’s treeline is lowered due to past human activity, an upward shift is expected. Also, considering the great importance of competition strategy, current conditions in mountain pine stands are favourable for future forest succession.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aeschimann D, Lauber K, Moser D, Theurillat J-P (2004) Flora alpina. Ein Atlas sämtlicher 4500 Gefäßpflanzen der Alpen. 3 Bd

  • ARSO (2009) Hydrological data. ed. S. e. agency

  • Badeck FW, Lischke H, Bugmann H, Hickler T, Hönninger K, Lasch P, Lexer MJ, Mouillot F, Schaber J, Smith B (2001) Tree species composition in European pristine forests: comparison of stand data to model predictions. Clim Change 51:307–347

    Article  Google Scholar 

  • Boer M, Stafford Smith M (2003) A plant functional approach to the prediction of changes in Australian rangeland vegetation under grazing and fire. J Veg Sci 14(3):333–344. doi:10.1111/j.1654-1103.2003.tb02159.x

    Article  Google Scholar 

  • Braun-Blanquet J (1964) Pflanzensoziologie. Grundzüge der Vegetations Kunde, 3rd edn. Springer, Wien

    Google Scholar 

  • Bullock JM, Franklin J, Stevenson MJ, Silvertown J, Coulson SJ, Gregory SJ, Tofts R (2001) A plant trait analysis of responses to grazing in a long-term experiment. J Appl Ecol 38(2):253–267

    Article  Google Scholar 

  • Chapin FSI, Bret-Harte MS, Hobbie SE, Zhong H (1996) Plant functional types as predictors of transient responses of arctic vegetation to global change. J Veg Sci 7(3):347–358

    Article  Google Scholar 

  • Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Diaz S (2000) Consequences of changing biodiversity. Nature 405(6783):234–242

    Article  PubMed  CAS  Google Scholar 

  • Chytry M, Otypkova Z (2003) Plot sizes used for phytosociological sampling of European vegetation. J Veg Sci 14(4):563–570

    Article  Google Scholar 

  • Crawley MJ (2009) Life history and environment. Plant Ecol. doi:10.1002/9781444313642.ch4

    Google Scholar 

  • Dainese M, Bragazza L (2012) Plant traits across different habitats of the Italian Alps: a comparative analysis between native and alien species. Alpine Bot 122(1):11–21. doi:10.1007/s00035-012-0101-4

    Article  Google Scholar 

  • Dakskobler I (2006) The association Rhodothamno-Laricetum (Zukrigl 1973) Willner & Zukrigl 1999 in the Julian Alps. Razprave 4 razreda SAZU, Historia naturalis. Classis 4 47(1):117–192

    Google Scholar 

  • de Bello F, Lepš J, Sebastia M-T (2005) Predictive value of plant traits to grazing along a climatic gradient in the Mediterranean. J Appl Ecol 42(5):824–833

    Article  Google Scholar 

  • Diaci J (1994) Spreminjanje naravne gozdne vegetacije ob višinskem gradientu Veže - Dleskovške planote v Savinjskih Alpah. Zbornik gozdarstva in lesarstva 44:45–84

    Google Scholar 

  • Díaz Barradas MC, Zunzunegui M, Tirado R, Ain-Lhout F, García Novo F (1999) Plant functional types and ecosystem function in Mediterranean shrubland. J Veg Sci 10(5):709–716. doi:10.2307/3237085

    Article  Google Scholar 

  • Diaz S, Cabido M (1997) Plant functional types and ecosystem function in relation to global change. J Veg Sci 8(4):463–474

    Article  Google Scholar 

  • Diaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16(11):646–655

    Article  Google Scholar 

  • Díaz S, Cabido M, Zak M, Martínez Carretero E, Araníbar J (1999) Plant functional traits, ecosystem structure and land-use history along a climatic gradient in central-western Argentina. J Veg Sci 10(5):651–660

    Article  Google Scholar 

  • Díaz S, Lavorel S, McIntyre SUE, Falczuk V, Casanoves F, Milchunas DG, Skarpe C, Rusch G, Sternberg M, Noy-Meir I, Landsberg J, Zhang WEI, Clark H, Campbell BD (2007) Plant trait responses to grazing—a global synthesis. Glob Change Biol 13(2):313–341. doi:10.1111/j.1365-2486.2006.01288.x

    Article  Google Scholar 

  • Duckworth JC, Kent M, Ramsay PM (2000) Plant functional types: an alternative to taxonomic plant community description in biogeography? Prog Phys Geogr 24(4):515–542. doi:10.1177/030913330002400403

    Google Scholar 

  • Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67(3):345–366. doi:10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2

    Google Scholar 

  • Eler K (2007) Vegetation characteristics in relation to different management regimes of calcareous grassland: a functional analysis using plant traits. Ph. D., University of Ljubljana, Ljubljana

  • Eler K, Vidrih M, Batic F (2005) Vegetation characteristics in relation to different management regimes of calcareous grassland: a functional analysis using plant traits, vol 45. Berger, Horn

    Google Scholar 

  • Firm D (2006) Development of high-mountain forests in the reserve Polšak. BSc, University of Ljubljana, Biotechnical faculty, Department of forestry and renewable forest resources, Ljubljana

  • Fonseca CR, Overton JM, Collins B, Westoby M (2000) Shifts in trait-combinations along rainfall and phosphorus gradients. J Ecol 88(6):964–977

    Article  Google Scholar 

  • Franklin J, Syphard AD, Mladenoff DJ, He HS, Simons DK, Martin RP, Deutschman D, O’Leary JF (2001) Simulating the effects of different fire regimes on plant functional groups in Southern California. Ecol Model 142(3):261–283

    Article  Google Scholar 

  • Garnier E, Lavorel S, Ansquer P, Castro H, Cruz P, Dolezal J, Eriksson O, Fortunel C, Freitas H, Golodets C, Grigulis K, Jouany C, Kazakou E, Kigel J, Kleyer M, Lehsten V, Leps J, Meier T, Pakeman R, Papadimitriou M, Papanastasis V, Quested H, Quetier F, Robson M, Roumet C, Rusch G, Skarpe C, Sternberg M, Theau J-P, Thebault A, Vile D, Zarovali M (2007) Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann Bot 99(5):967–985

    Article  PubMed  Google Scholar 

  • Gitay H, Noble IR (1997) What are functional types and how should we seek them? In: Smith TM, Shugart HH, Woodward FI (eds) Plant functional types. Cambridge University Press, Cambridge, pp 3–19. In: Smith TM, Shugart HH, Woodward FI (eds) Plant functional types: their relevance to ecosystem properties and global change. Cambridge University Press, Cambridge, pp 3–19

  • Gitay H, Noble IR, Connell JH (1999) Deriving functional types for rain-forest trees. J Veg Sci 10(5):641–650. doi:10.2307/3237079

    Article  Google Scholar 

  • Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot Lond 90(4):537–544. doi:10.1093/Aob/Mcf222

    Article  CAS  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111(982):1169–1194

    Article  Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties, 2nd edn. Wiley, New York

    Google Scholar 

  • Hobbie SE (2007) Arctic ecology. In: Functional plant ecology, 2 edn. Books in soils, plants, and the environment. CRC Press. doi:10.1201/9781420007626.ch12

  • Hunt R, Hodgson JG, Thompson K, Bungener P, Dunnett NP, Askew AP, Bakker JP (2004) A new practical tool for deriving a functional signature for herbaceous vegetation. Appl Veg Sci 7(2):163–170. doi:10.1658/1402-2001(2004)007[0163:ANPTFD]2.0.CO;2

    Article  Google Scholar 

  • Kadunc A, Rugani T (1999) The upper timberline of Notranji Bohinj District (NW Slovenia). Gozdarski vestnik 57(1):23–33

    Google Scholar 

  • Kaligarič M, Šajna N, Škornik S (2005) Is variety of species-rich semi-natural Mesobromion grasslands detectable with functional approach? Ann Ser Hist Nat 15(2):239–248

    Google Scholar 

  • Kleyer M (1999) Distribution of plant functional types along gradients of disturbance intensity and resource supply in an agricultural landscape. J Veg Sci 10(5):697–708. doi:10.2307/3237084

    Article  Google Scholar 

  • Klotz S, Kühn I, Durka W (2002) BIOLFLOR – Eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland. Bundesamt für Naturschutz, Bonn

    Google Scholar 

  • Knevel IC, Bekker RM, Bakker JP, Kleyer M (2003) Life-history traits of the Northwest European flora: the LEDA database. J Veg Sci 14(4):611–614

    Article  Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115(4):445–459

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystem, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Kutnar L, Kobler A (2011) Prediction of forest vegetation shift due to different climate-change scenarios in Slovenia. Šumarski list 135(3–4):113–125

    Google Scholar 

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1):299–305. doi:10.1890/08-2244.1

    Article  PubMed  Google Scholar 

  • Landsberg J, Lavorel S, Stol J (1999) Grazing response groups among understorey plants in Arid Rangelands. J Veg Sci 10(5):683–696

    Article  Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16(5):545–556

    Article  Google Scholar 

  • Lavorel S, McIntyre S, Landsberg J, Forbes TDA (1997) Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends Ecol Evol 12(12):474–478

    Article  PubMed  CAS  Google Scholar 

  • Lavorel S, Touzard B, Lebreton J-D, Clément B (1998) Identifying functional groups for response to disturbance in an abandoned pasture. Acta Oecologica 19(3):227–240

    Article  Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294(5543):804–808

    Article  PubMed  CAS  Google Scholar 

  • Louault F, Pillar VD, Aufrère J, Garnier E, Soussana JF (2005) Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. J Veg Sci 16(2):151–160. doi:10.1111/j.1654-1103.2005.tb02350.x

    Article  Google Scholar 

  • Martinčič A, Wraber T, Jogan N, Podobnik A, Ravnik V, Turk B, Vreš B, Frajman B, Strgulc-Krajšek S, Trčak B, Bačič T, Fischer MA, Eler K, Surina B (2007) Mala flora Slovenije: ključ za določanje praprotnic in semenk, 4th edn. Tehniška založba Slovenije, Ljubljana

    Google Scholar 

  • Mayer H, Ott E (1991) Gebirgswaldbau - Schutzwaldpflege: ein waldbaulicher Beitrag zur Landschaftsökologie und zum Umweltschutz, 2nd edn. Fischer, G., Stuttgart, New York

    Google Scholar 

  • McIntyre S, Lavorel S (2001) Livestock grazing in subtropical pastures: steps in the analysis of attribute response and plant functional types. J Ecol 89(2):209–226. doi:10.1046/j.1365-2745.2001.00535.x

    Article  Google Scholar 

  • McIntyre S, Lavorel S, Tremont RM (1995) Plant life-history attributes: their relationship to disturbance response in herbaceous vegetation. J Ecol 83(1):31–44

    Article  Google Scholar 

  • McIntyre S, Lavorel S, Landsberg J, Forbes TDA (1999a) Disturbance response in vegetation—towards a global perspective on functional traits. J Veg Sci 10(5):621–630

    Article  Google Scholar 

  • McIntyre S, Díaz S, Lavorel S, Cramer W (1999b) Plant functional types and disturbance dynamics—introduction. J Veg Sci 10(5):603–608

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) vegan: community ecology package. R package version 1.17-6

  • Pausas JG (1999) Response of plant functional types to changes in the fire regime in Mediterranean ecosystems: a simulation approach. J Veg Sci 10(5):717–722. doi:10.2307/3237086

    Article  Google Scholar 

  • Pausas J (2006) Simulating Mediterranean landscape pattern and vegetation dynamics under different fire regimes. Plant Ecol 187(2):249–259. doi:10.1007/s11258-006-9138-z

    Article  Google Scholar 

  • Pausas JG, Lavorel S (2003) A hierarchical deductive approach for functional types in disturbed ecosystems. J Veg Sci 14(3):409–416. doi:10.1111/j.1654-1103.2003.tb02166.x

    Article  Google Scholar 

  • Peco B, de Pablos I, Traba J, Levassor C (2005) The effect of grazing abandonment on species composition and functional traits: the case of dehesa grasslands. Basic Appl Ecol 6(2):175–183

    Article  Google Scholar 

  • Pillar VD (1999) On the identification of optimal plant functional types. J Veg Sci 10(5):631–640. doi:10.2307/3237078

    Article  Google Scholar 

  • Počkar B, Stritih J (1987) Strategija rasti gozda na zgornji gozdni meji – primerjava med Dinaridi in Julijskimi Alpami. BSc, University of Ljubljana, Biotechnical faculty, Department of forestry and renewable forest resources, Ljubljana

  • Poldini L, Oriolo G, Francescato C (2004) Mountain pine scrubs and heaths with Ericaceae in the south-eastern Alps. Plant Biosyst 138:53–85

    Article  Google Scholar 

  • Poschlod P, Kleyer M, Jackel A-K, Dannemann A, Tackenberg O (2003) BIOPOP—a database of plant traits and internet application for nature conservation. Folia Geobotanica 38(3):263–271. doi:10.1007/bf02803198

    Article  Google Scholar 

  • Pristov J, Pristov N, Zupančič B (1998) Klima Triglavskega narodnega parka. Triglavski narodni park in Hidrometeorološki zavod RS, Bled

    Google Scholar 

  • Raunkiær C, Gilbert-Carter H, Fausbøll A, Tansley AG (1934) The life forms of plants and statistical plant geography. The Clarendon Press, Oxford

    Google Scholar 

  • Roberts DW (2010) labdsv: ordination and multivariate analysis for ecology. R package version 1.4-1

  • Skov F (2000) Distribution of plant functional attributes in a managed forest in relation to neighbourhood structure. Plant Ecol 146(2):121–130

    Article  Google Scholar 

  • Smith TM, Shugart HH, Woodward FI (1997) Plant functional types: their relevance to ecosystem properties and global change. International geosphere-biosphere programme book series. Cambridge University Press, Cambridge

    Google Scholar 

  • Takashima T, Hikosaka K, Hirose T (2004) Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ 27(8):1047–1054. doi:10.1111/j.1365-3040.2004.01209.x

    Article  CAS  Google Scholar 

  • Team RDC (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Thuiller W, Lavorel S, Midgley GUY, Lavergne S, Rebelo T (2004) Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron taxa. Ecology 85(6):1688–1699

    Article  Google Scholar 

  • Tranquillini W (1979) Physiological ecology of the alpine timberline. Tree existence at high altitudes with special reference to the European Alps, vol 31. Ecological Studies

  • van der Maarel E (1979) Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39(2):97–114

    Article  Google Scholar 

  • van der Maarel E (2005) Vegetation ecology—an overview. In: Evd Maarel (ed) Vegetation ecology. Blackwell Publishing, Malden, pp 1–51

    Google Scholar 

  • Vandvik V, Birks HJB (2002) Pattern and process in Norwegian upland grasslands: a functional analysis. J Veg Sci 13(1):123–134. doi:10.1111/j.1654-1103.2002.tb02029.x

    Article  Google Scholar 

  • Verheyen K, Honnay O, Motzkin G, Hermy M, Foster DR (2003) Response of forest plant species to land-use change: a life-history trait-based approach. J Ecol 91:563–577

    Article  Google Scholar 

  • Weiher E, van der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10(5):609–620. doi:10.2307/3237076

    Article  Google Scholar 

  • Westhoff V, Evd Maarel (1973) The Braun-Blanquet approach. In: Whittaker RH (ed) Ordination and classification of communities. Handbook of vegetation science, 5, vol 5. Dr. W. Junk, The Hague, pp 619–726

    Google Scholar 

  • Wieser G, Tausz M (eds) (2007) Trees at their upper limit, treelife limitation at the alpine timberline, vol 5. Plant ecophysiology, vol 5. University of Groningen, Dordrecht

    Google Scholar 

  • Woodward FI, Cramer W (1996) Plant functional types and climatic change: introduction. J Veg Sci 7(3):306–308. doi:10.1111/j.1654-1103.1996.tb00489.x

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428(6985):821–827

    Article  PubMed  CAS  Google Scholar 

  • Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005) Assessing the generality of global leaf trait relationships. New Phytol 166(2):485–496. doi:10.1111/j.1469-8137.2005.01349.x

    Article  PubMed  Google Scholar 

  • Yan B, Zhang J, Liu Y, Li Z, Huang X, Yang W, Prinzing A (2012) Trait assembly of woody plants in communities across sub-alpine gradients: identifying the role of limiting similarity. J Veg Sci 23(4):698–708. doi:10.1111/j.1654-1103.2011.01384.x

    Article  Google Scholar 

  • Zupančič M, Žagar V, Culiberg M (2006) Slovene Alpine Pinus mugo scrub in comparison with European Pinus mugo scrub (Rhodothamno-Rhododendretum hirsuti var. geogr. Paederota lutea). Academia Scientiarum et Artium Slovenica, Classis IV: Historia naturalis, Opera 40, Ljubljana

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Rozman.

Additional information

Communicated by A. Weiskittel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozman, A., Diaci, J. & Batič, F. Functional analysis of vegetation on alpine treeline ecotone in the Julian and Kamnik-Savinja Alps in Slovenia. Eur J Forest Res 132, 579–591 (2013). https://doi.org/10.1007/s10342-013-0691-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-013-0691-4

Keywords

Navigation