Skip to main content

Advertisement

Log in

Environmental conditions on wintering grounds and during migration influence spring nutritional condition and arrival phenology of Neotropical migrants at a northern stopover site

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Assessing effects of winter habitat quality and environmental conditions on fitness of migratory birds is important to understand factors that regulate migratory bird populations throughout the annual cycle. We evaluated effects of winter habitat occupancy, as inferred from tissue stable-carbon (δ13C) and -nitrogen (δ15N) isotope values, on nutritional condition and arrival date of seven long-distance Nearctic–Neotropical migratory species sampled at Delta Marsh Bird Observatory (DMBO, Manitoba, Canada) during their spring migration to more northerly breeding areas. Additionally, we used a long-term dataset of DMBO to assess the effect of May minimum temperature, May minimum daily temperature, and El Niño–Southern Oscillation (ENSO) index on body condition and spring arrival date. A positive effect of assumed mesic winter habitat on nutritional condition and arrival phenology was detected primarily in species overwintering in the Caribbean (Palm Warbler Setophaga palmarum, Northern Waterthrush Parkesia novaboracensis). We caution, then, against generalizing the results of previous isotopic studies inferring winter habitat use applied to Neotropical migrants wintering in the Caribbean (e.g., American Redstart Setophaga ruticilla) to those species or populations wintering elsewhere and especially away from dichotomous mangrove versus scrub habitats. In general, birds arrived later and in lower nutritional condition during colder springs, and early migrants did not adjust their timing of migration to spring temperature. Early arrival was associated with poorer nutritional condition, and most species had their lowest nutritional condition during the coldest periods of migration. ENSO, probably through its influence on weather and food availability during winter, carried over to northern latitudes and affected both spring arrival date and nutritional condition.

Zusammenfassung

Die Umweltbedingungen in den Überwinterungsgebieten und auf dem Zug beeinflussen den Ernährungszustand im Frühjahr und die Ankunftsphänologie neotropischer Zugvögel in einem nördlichen Rastgebiet

Den Einfluss der Winterhabitatqualität und der Umweltbedingungen auf die Fitness von Zugvögeln abzuschätzen, ist wichtig, um die Faktoren zu verstehen, die Zugvogelpopulationen im Jahresverlauf regulieren. Wir haben die Effekte der Winterhabitatbesetzung, abgeleitet aus den Werten stabiler Isotope von Kohlenstoff (δ13C) und Stickstoff (δ15N) in Geweben, auf den Ernährungszustand und das Ankunftsdatum von sieben nearktisch-neotropischen Zugvogelarten ausgewertet. Diese Arten wurden während ihres Frühjahrszuges in nördlicher gelegene Brutgebiete an der Delta Marsh Vogelbeobachtungsstation (DMBO, Manitoba, Kanada) beprobt. Zusätzlich haben wir einen Langzeit-Datensatz der DMBO verwendet, um den Effekt der Minimumtemperatur im Mai, der minimalen Tagestemperatur im Mai und des El Niño–Südlichen Oszillations (ENSO) Indexes auf die Körperkondition und das Ankunftsdatum im Frühjahr abzuschätzen. Ein positiver Effekt des vermeintlich mesischen Winterhabitats auf den Ernährungszustand und die Ankunftsphänologie wurde hauptsächlich bei Arten festgestellt, die in der Karibik überwintern (Sumpfwaldsänger Setophaga palmarum; Drosselwaldsänger Parkesia noveboracensis). Wir warnen daher davor, die Ergebnisse vorheriger Isotopuntersuchungen zur Winterhabitatnutzung von neotropischen Zugvögeln, die in der Karibik überwintern (z. B. Schnäpperwaldsänger Setophaga ruticilla), auf Arten oder Populationen zu übertragen, die anderswo überwintern, insbesondere außerhalb von dichotomen Mangroven- versus Buschhabitaten. Im Allgemeinen trafen Vögel in kälteren Frühjahren später und in schlechterem Ernährungszustand ein, und frühe Zugvögel passten das Timing ihres Zuges nicht an die Frühjahrstemperatur an. Eine frühe Ankunft war mit schlechterem Ernährungszustand assoziiert, und die meisten Arten wiesen ihren schlechtesten Ernährungszustand während der kältesten Perioden des Zuges auf. Die ENSO, wahrscheinlich durch ihren Einfluss auf das Wetter und die Nahrungsverfügbarkeit im Winter, hatte auch Einfluss in nördlichen Breiten und wirkte sich sowohl auf das Ankunftsdatum im Frühjahr als auch auf den Ernährungszustand aus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahola M, Laaksonen T, Sippola K, Eeva T, Rainio K, Lehikoinen EA (2004) Variation in climate warming along the migration route uncouples arrival and breeding dates. Glob Change Biol 10:1610–1617

    Article  Google Scholar 

  • Ambrosini R, Orioli V, Massimino D, Bani L (2011) Identification of putative wintering areas and ecological determinants of common house-martin (Delichon urbicum) and common swift (Apus apus) breeding in northern Italy. Avian Conserv Ecol 6:3. http://dx.doi.org/10.5751/ACE-00439-060103

  • Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C et al (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Glob Biogeochem Cycles 17:1031

    Article  Google Scholar 

  • Bearhop S, Hilton GM, Votier SC, Waldron S (2004) Stable isotope ratios indicate that body condition in migrating passerines is influenced by winter habitat. Proc R Soc Lond B 271:S215–S218

    Article  Google Scholar 

  • Both C, Bijlsma RG, Visser ME (2005) Climatic effects on spring migration and breeding in long distance migrant, the Pied Flycatcher Ficedula hypoleuca. J Avian Biol 36:368–373

    Article  Google Scholar 

  • Boulet M, Gibbs HL, Hobson KA (2006) Integrated analysis of genetic, stable isotope, and banding data reveal migratory connectivity and flyways in the Northern Yellow Warbler (Dendroica petechia; Aestiva group). Ornithol Monogr 61:29–78

    Article  Google Scholar 

  • Boutton TW (1991) Stable carbon isotope ratios of natural materials. In: Coleman DC, Fry B (eds) Carbon isotope techniques. Academic, San Diego, pp 173–186

    Chapter  Google Scholar 

  • Burnham KP, Anderson DR (2002) Multimodel selection and multimodel inference: A practical information theoretic approach. Springer, New York

    Google Scholar 

  • Cotton PA (2003) Avian migration phenology and global climate change. Proc Natl Acad Sci USA 100:12219–12222

    Article  PubMed  CAS  Google Scholar 

  • Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, Kahmen A, Mack MC, McLauchlan KK, Michelsen A, Nardoto GB, Pardo LH, Peñuelas J, Reich PB, Schuur EAG, Stock WD, Templer PH, Virginia RA, Welker JM, Wright IJ (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183:980–992

    Article  PubMed  CAS  Google Scholar 

  • Dawson WR, Marsh RL, Yacoe ME (1983) Metabolic adjustments of small passerine birds for migration and cold. Am J Physiol 245:755–767

    Google Scholar 

  • DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506

    Article  CAS  Google Scholar 

  • Drent R, Both C, Green M, Madsen J, Piersma T (2003) Pay-offs and penalties of competing migratory schedules. Oikos 103:274–292

    Article  Google Scholar 

  • Eaton SW (1995) Northern Waterthrush (Parkesia noveboracensis). In: Pool A (ed) The birds of North America online. Ithaca, Cornell Lab of Ornithology. http://bna.birds.cornell.edu/bna/species/182. Accesses 6 April 2011

  • Ehleringer JR (1991) 13C/12C fractionation and its utility in terrestrial plant studies. In: Coleman DC, Fry B (eds) Carbon isotopes techniques. Academic, San Diego, pp 187–201

    Chapter  Google Scholar 

  • Evans DR (2007) Soil nitrogen isotope composition. In: Michener RH, Lajtha K (eds) Stable isotopes in ecology and environmental science, 2nd edn. Blackwell, Oxford, pp 83–97

    Chapter  Google Scholar 

  • Gilbert N, Raworth DA (1996) Insects and temperature: a general theory. Can Entomol 128:1–13

    Article  Google Scholar 

  • Hobson KA (2008) Applying isotopic methods to tracking animal movements. In: Hobson KA, Wassenaar LI (eds) Tracking animal migration with stable isotopes. Elsevier, London, pp 45–78

    Chapter  Google Scholar 

  • Hobson KA, Barnett-Johnson R, Cerling T (2010) Using isoscapes to track animal migration. In: West JB, Dawson TE, Bowen GJ, Tu KP (eds) Isoscapes: understanding movement, pattern, and process on earth through isotope mapping. Springer, London, pp 273–298

    Google Scholar 

  • Holmgren M, Scheffer M, Ezcurra E, Gutierrez JR, Mohren GMJ (2001) El Niño effects on the dynamics of terrestrial ecosystems. Trends Ecol Evol 16:89–94

    Article  PubMed  Google Scholar 

  • Huin N, Sparks TH (1998) Arrival and progression of the swallow Hirundo rustica through Britain. Bird Study 45:361–370

    Article  Google Scholar 

  • Hussell DJT, Ralph CJ (2005) Recommended methods for monitoring change in landbird populations by counting and capturing migrants. North Am Bird Bander 30:6–20

    Google Scholar 

  • Jaksic FM (2001) Ecological effects of El Niño in terrestrial ecosystems of western South America. Ecography 24:241–250

    Google Scholar 

  • Kokko H (1999) Competition for early arrival in migratory birds. J Anim Ecol 68:640–650

    Article  Google Scholar 

  • Labocha MK, Hayes JP (2012) Morphometric indices of body condition in birds: a review. J Ornithol 153:1–22

    Article  Google Scholar 

  • Lajtha K, Marsha JD (1994) Sources of variation in the stable isotopic composition of plants. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and environmental science. Oxford University Press, London, pp 1–21

    Google Scholar 

  • LaManna JA, George TL, Saracco JF, Nott MP, DeSante DF (2012) El Nino southern oscillation influences annual survival of a migratory songbird at a regional scale. Auk 129:734–743

    Article  Google Scholar 

  • Lowther PE (1999) Alder Flycatcher (Empidonax alnorum). In: Poole A (ed) The birds of North America online. Cornell Lab of Ornithology, Ithaca. http://bna.birds.cornell.edu/bna/species/454. Accessed 6 April 2011

  • Lozano GA, Perreault S, Lemon RE (1996) Age, arrival date and reproductive success of male American Redstarts Setophaga ruticilla. J Avian Biol 27:164–170

    Article  Google Scholar 

  • MacKenzie DI (1982) The dune-ridge forest, Delta Marsh, Manitoba: overstory vegetation and soil patterns. Can Field Nat 96:61–68

    Google Scholar 

  • Marra PP, Holmes RT (2001) Consequences of dominance-mediated habitat segregation in American Redstarts during the nonbreeding season. Auk 118:92–104

    Google Scholar 

  • Marra PP, Sherry TW, Holmes RT (1993) Territorial exclusion by a Neotropical migrant bird in winter: a removal experiment with American Redstarts (Setophaga ruticilla) in Jamaica. Auk 110:565–572

    Article  Google Scholar 

  • Marra PP, Hobson KA, Holmes RT (1998) Linking winter and summer events in a migratory bird by using stable-carbon isotopes. Science 282:1884–1886

    Article  PubMed  CAS  Google Scholar 

  • Marra PP, Francis CM, Mulvihill RS, Moore FR (2005) The influence of climate on the timing and rate of spring bird migration. Oecologia 142:307–315

    Article  PubMed  Google Scholar 

  • Mazerolle DF, Dufour KW, Hobson KA, den Haan HE (2005) Effects of large-scale climatic fluctuations on survival and production of young in a neotropical migrant songbird, the Yellow Warbler Dendroica petechia. J Avian Biol 36:155–163

    Article  Google Scholar 

  • Mazerolle DF, Sealy SG, Hobson KA (2011) Interannual flexibility in the breeding phenology of a neotropical migrant songbird in response to weather conditions at breeding and wintering areas. Ecoscience 18:18–25

    Article  Google Scholar 

  • Newton I (2006) Can conditions experienced during migration limit the population levels of birds? J Ornithol 147:146–166

    Article  Google Scholar 

  • NOAA (2011) National Oceanic and Atmospheric Administration. http://www.cpc.ncep.noaa.gov/data/indices/. Accessed 20 April 2011

  • Norris DR (2005) Carry-over effects and habitat quality in migratory populations. Oikos 109:178–186

    Article  Google Scholar 

  • Norris DR, Marra PP (2007) Seasonal interactions, habitat quality, and population dynamics in migratory birds. Condor 109:535–547

    Article  Google Scholar 

  • Norris DR, Taylor CM (2006) Predicting the consequences of carry-over effects for migratory populations. Biol Lett 2:148–151

    Article  PubMed  Google Scholar 

  • Norris DR, Marra PP, Kyser TK, Sherry TW, Ratcliffe LM (2004) Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird. Proc R Soc Lond B 271:59–64

    Article  Google Scholar 

  • Norris DR, Marra PP, Kyser TK, Ratcliffe LM (2005) Tracking habitat use in a long distance migratory bird, the American Redstart (Setophaga ruticilla), using stable ratios in cellular blood. J Avian Biol 36:164–170

    Article  Google Scholar 

  • Norris DR, Marra PP, Bowen GJ, Ratcliffe LM, Royle JA, Kyser TK (2006) Migratory connectivity of a widely distributed songbird, the American Redstart (Setophaga ruticilla). Ornithol Monogr 61:14–28

    Article  Google Scholar 

  • Nott PM, DeSante DF, Siegel RB, Pyle P (2002) Influences of the el Niño/Southern Oscillation and the North Atlantic Oscillation on avian productivity in forests of the pacific northwest of North America. Glob Ecol Biogeogr 11:333–342

    Article  Google Scholar 

  • Philander GS (1990) El Niño, La Niña, and the Southern oscillation. Academic, San Diego

    Google Scholar 

  • Pyle P (1997) Identification guide to North American birds. Slate Creek, Bolinas

    Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Nino/Southern oscillation. Mon Weather Rev 115:1606–1626

    Article  Google Scholar 

  • Runge MC, Marra PP (2005) Modeling seasonal interactions in the population dynamics of migratory birds. In: Greenberg R, Marra PP (eds) Birds of two worlds. Johns Hopkins University Press, Baltimore, pp 375–389

    Google Scholar 

  • Saino N, Zépt T, Romano M, Rubolini D, Spina F, Møller AP (2004) Ecological conditions during winter predict arrival date at the breeding grounds in a trans-Saharan migratory bird. Ecol Lett 7:21–25

    Article  Google Scholar 

  • Shabbar A, Khandekar M (1996) The impact of El Niño Southern Oscillation on the temperature field over Canada. Atmos Ocean 34:4101–4106

    Article  Google Scholar 

  • Shabbar A, Bonsal B, Khandekar M (1997) Canadian precipitation patterns with the southern oscillation. J Clim 10:3016–3027

    Article  Google Scholar 

  • Sherry TW, Holmes RT (1996) Winter habitat quality, population limitation, and conservation of Neotropical–nearctic migrant birds. Ecology 77:36–48

    Article  Google Scholar 

  • Sherry TW, Johnson MD, Strong AM (2005) Does winter food limit populations of migratory birds? In: Greenberg R, Marra PP (eds) Birds of Two Worlds: The ecology and evolution of temperate-tropical migration systems. Johns Hopkins University Press, Baltimore, pp 414–425

    Google Scholar 

  • Sillett TS, Holmes RT, Sherry TW (2002) Impacts of a global climate cycle on population dynamics of a migratory songbird. Science 288:2040–2042

    Article  Google Scholar 

  • Smith RJ, Moore FR (2003) Arrival fat and reproductive performance in a long-distance passerine migrant. Oecologia 134:325–331

    PubMed  Google Scholar 

  • Smith RJ, Moore FR (2005) Arrival timing and seasonal reproductive performance in a long-distance migratory landbird. Behav Ecol Sociobiol 57:231–239

    Article  Google Scholar 

  • Smith JAM, Reitsma LR, Marra PP (2010) Moisture as a determinant of habitat quality for a nonbreeding Neotropical migratory songbird. Ecology 91:2874–2882

    Article  PubMed  Google Scholar 

  • Studds CE, Marra PP (2005) Nonbreeding habitat occupancy and population processes: an upgrade experiment with a migratory bird. Ecology 86:2380–2385

    Article  Google Scholar 

  • Studds CE, Marra PP (2011) Rainfall-induced changes in food availability modify the spring departure programme of a migratory bird. Proc R Soc Lond B 278:3437–3443

    Article  Google Scholar 

  • Thomas DW, Blondel J, Perret P (2001) Energetic and fitness costs of mismatching resource supply and demand in seasonally breeding birds. Science 291:2598–2599

    Article  PubMed  CAS  Google Scholar 

  • Tøttrup AP, Raini K, Coppak T, Lehikoinen E, Rahbek C, Thorup K (2010) Local temperature fine-tunes the timing of spring migration in birds. Integr Comp Biol 50:293–304

    Article  PubMed  Google Scholar 

  • Wilson WH Jr (1996) Palm Warbler (Sethophaga palmarum). In: Pool A (ed) The birds of North America online. Cornell Lab of Ornithology, Ithaca. http://bna.birds.cornell.edu/bna/species/238. Accessed 6 April 2011

  • Winker K (1995) Autumn stopover on the Isthmus of Tehuantepec by woodland Nearctic–neotropic migrants. Auk 112:690–700

    Article  Google Scholar 

  • Winker K, Warner DW, Weisbrod AR (1992) Daily mass gains among woodland migrants at an inland stopover site. Auk 109:853–862

    Article  Google Scholar 

  • Wunderle JM Jr (1995) Population characteristics of Black-throated Blue Warblers wintering in three sites on Puerto Rico. Auk 112:931–946

    Article  Google Scholar 

Download references

Acknowledgments

We thank Heidi deen Han, Josh Levac, Yvonne Benting, Ian Thompson, Lucas Berrigan, and other staff and volunteers of The Delta Marsh Bird Observatory for their help during the banding and sampling process. We are grateful to the staff of the Delta Marsh Field Station (University of Manitoba) for providing support and accommodation. We thank Steven Van Wilgenburg and two anonymous reviewers for providing comments to improve this paper. Funding for this project was provided by an operating grant to K.A.H. from Environment Canada and a Delta Marsh Field Station scholarship to A.M.G.-P. from the University of Manitoba. Capture and sampling methods carried out in this study followed guidelines recommended by the Canadian Council on Animal Care as approved by the CCAC committee of the University of Saskatchewan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana María González-Prieto.

Additional information

Communicated by C. G. Guglielmo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Prieto, A.M., Hobson, K.A. Environmental conditions on wintering grounds and during migration influence spring nutritional condition and arrival phenology of Neotropical migrants at a northern stopover site. J Ornithol 154, 1067–1078 (2013). https://doi.org/10.1007/s10336-013-0975-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-013-0975-y

Keywords

Navigation