Skip to main content
Log in

Morphometrics and stable isotopes differentiate populations of Northern Wheatears (Oenanthe oenanthe)

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Linking events of breeding, wintering and stopover areas has important ecological and conservation implications for migratory species. To find a tool to connect these different events in a long-distance migrating songbird, the Northern Wheatear Oenanthe oenanthe, we applied a discriminant analysis based on morphometrics and analysed stable isotope values (δ13C, δ15N, δD) in feathers. Morphometric differences were additionally analysed with respect to wing shape as an adaptation to migration routes. Discriminant analysis 100% separated a group of long-winged migrants passing the German offshore island of Helgoland from Icelandic and Norwegian breeding birds, as well as from Northern Wheatears passing the Baltic Sea coast on migration. This clear assignment suggests a Greenlandic origin of these long-winged Northern Wheatears. The most likely Greenlandic origin was further supported by depleted δD values in feathers of these birds grown on the breeding grounds. We found a relatively high proportion of presumed Greenlandic birds on Helgoland and especially on Fair Isle (Scotland) during spring migration. Morphometric differences were based mainly on wing morphology and could be successfully connected with migration routes. Presumed Greenlandic Northern Wheatears showed more pointed wings than birds from other European breeding areas. Such wings might be natural selection’s solution for the long obligatory non-stop flights during the Atlantic crossings.

Zusammenfassung

Für ziehende Tierarten hat der Zusammenhang von Ereignissen in Brut-, Winter- und Rastgebieten wichtige Konsequenzen für ökologische Aspekte und den Artenschutzes. Um im Falle eines typischen Langstreckenziehers, des Steinschmätzers (Oenanthe oenanthe), ein Werkzeug zu finden, um Ereignisse in den verschiedenen Aufenthaltsgebieten verbinden und verschiedene Populationen ansprechen zu können, haben wir eine Diskriminanzanalyse aufgrund von morphometrischen Daten durchgeführt und Stabile Isotope (δ13C, δ15N, δD) aus Federn analysiert. Morphometrische Unterschiede wurden zusätzlich in Hinsicht auf Adaption der Flügelform aufgrund verschiedener Zugrouten untersucht. Anhand der Diskriminanzanalyse ließ sich eine Gruppe von besonders langflügeligen Durchziehern auf Helgoland vollständig sowohl von Isländischen und Norwegischen Steinschmätzern unterscheiden, als auch von Steinschmätzer die auf dem Zug an der baltischen Ostseeküste erscheinen. Diese klare Abgrenzung lässt einen Grönländischen Ursprung dieser langflügeligen Steinschmätzer vermuten. Eine Vermutung, die weiterhin durch deutlich abgereicherte δD Werte in Federn, die im Brutgebiet gewachsen waren, unterstützt wird. Wir fanden während des Frühjahrszuges einen relativ hohen Anteil an vermutlich Grönländischen Vögeln auf Helgoland und besonders auf Fair Isle (Schottland). Morphometrische Unterschiede basierten hauptsächlich auf Unterschieden in der Flügelform und konnten mit den unterschiedlich Anforderungen während des Zuges in Verbindung gesetzt werden. Steinschmätzer mit vermutlich Grönländischen Ursprung zeigten spitzere Flügel als Vögel von anderen Europäischen Brutgebieten. Diese Flügel scheinen das Ergebnis natürlicher Selektion innerhalb dieser Population zu sein, die besonders lange nonstop Flüge zur Überquerung des Nordost-Atlantiks bewältigen muss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alerstam T (1990) Bird migration. Cambridge University Press, Cambridge

    Google Scholar 

  • Alerstam T (2001) Detours in bird migration. J Theor Biol 209:319–331

    CAS  PubMed  Google Scholar 

  • Andersson A, Follestad A, Nilsson L, Persson H (2001) Migration patterns of Nordic greylag geese Anser anser. Ornis Svec 11:19–58

    Google Scholar 

  • Backhaus K, Erichson B, Plinke W, Weiber R (1990) Multivariate analyse-methoden. Eine anwendungsorientierte Einführung, 6th edn. Springer, Berlin

    Google Scholar 

  • Bairlein F (2001) Results of bird ringing in the study of migration routes and behaviour. Ardea 89:7–19

    Google Scholar 

  • Bakken V, Runde O, Tjørve E (2006) Norsk Ringmerkingsatlas, vol 2. Stavanger Museum, Stavanger

    Google Scholar 

  • Bensch S, Andersson T, Åkesson S (1999) Morphological and molecular variation across a migratory divide in willow warblers, Phylloscopus trochilus. Evolution 53:1925–1935

    PubMed  Google Scholar 

  • Berthold P (1993) Bird migration: a general survey. Oxford University Press, Oxford, New York, Tokyo

    Google Scholar 

  • Boulet M, Norris DR (2006) The past and present of migratory connectivity. Ornithol Monogr 61:1–13

    Google Scholar 

  • Boulet M, Gibbs HL, Hobson KA (2006) Integrated analysis of genetic, stable isotope, and banding data reveal migratory connectivity and flyways in the northern yellow warbler (Dendroica petechia; aestiva group). Ornithol Monogr: 29–78

  • Bowen GJ (2009) The online isotopes in precipitation calculator, version 2.2. http://www.waterisotopes.org

  • Bowen GJ, Wassenaar LI, Hobson KA (2005) Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143:337–348

    PubMed  Google Scholar 

  • Chamberlain CP, Blum JD, Holmes RT, Feng X, Sherry TW, Graves GR (1997) The use of isotope tracers for identifying populations of migratory birds. Oecologia 109:132–141

    Google Scholar 

  • Chisholm BS, Nelson DE, Schwarcz HP (1982) Stable-carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diets. Science 216:1131–1132

    CAS  PubMed  Google Scholar 

  • Clark RG, Hobson KA, Wassenaar LI (2006) Geographic variation in the isotopic (δD, δ13C, δ15N, δ34S) composition of feathers and claws from lesser scaup and northern pintail: implications for studies of migratory connectivity. Can J Zool 84:1395–1401

    CAS  Google Scholar 

  • Conder P (1989) The wheatear. Christopher Helm, London

    Google Scholar 

  • Copete JL, Mariné R, Bigas D, Martínez-Vilata A (1999) Differences in wing shape between sedentary and migratory reed buntings Emberiza schoeniculus. Bird Study 46:100–103

    Google Scholar 

  • Cramp S (1988) The birds of the western Palearctic, vol 5. Oxford University Press, Oxford

    Google Scholar 

  • Delingat J, Dierschke V, Schmaljohann H, Mendel B, Bairlein F (2006) Daily stopovers as optimal migration strategy in a long distance migrating passerine: the northern wheatear (Oenanthe oenanthe). Ardea 94:593–605

    Google Scholar 

  • Delingat J, Bairlein F, Hedenström A (2008) Obligatory barrier crossing and adaptive fuel management in migratory birds: the case of the Atlantic crossing in northern wheatears (Oenanthe oenanthe). Behav Ecol Sociobiol 62:1069–1078

    Google Scholar 

  • Dierschke V, Delingat J (2001) Stopover behaviour and departure decison of northern wheatears, Oenanthe oenanthe, facing different onward non-stop flight distances. Behav Ecol Sociobiol 50:535–545

    Google Scholar 

  • Dierschke V, Delingat J (2003) Stopover of northern wheatears Oenanthe oenanthe at Helgoland: where do the migratory routes of Scandinavian and Nearctic birds join and split? Ornis Svec 13:53–61

    Google Scholar 

  • Dierschke V, Schmaljohann H, Mendel B (2005) Differential timing of spring migration in northern wheatears: hurried males or weak females? Behav Ecol Sociobiol 57:470–480

    Google Scholar 

  • Drost R (1930) Oenanthe oenanthe schiöleri Salom. als Durchzügler von Helgoland. Der Vogelzug 1:181–182

    Google Scholar 

  • Dymond JN (1991) The birds of Fair Isle. Self-published

  • Erni B, Liechti F, Bruderer B (2005) The role of wind in passerine autumn migration between Europe and Africa. Behav Ecol 16:732–740

    Google Scholar 

  • Fiedler W (2005) Ecomorphology of the external flight apparatus of blackcaps (Sylvia atricapilla) with different migration behavior. Ann N Y Acad Sci 1046:253–263

    PubMed  Google Scholar 

  • Fransson T (1995) Timing and speed of migration in North and West European populations of Sylvia warblers. J Avian Biol 26:39–48

    Google Scholar 

  • Fridolfsson A-K, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol 30:116–121

    Google Scholar 

  • Fuller MR, Seegar WS, Schueck LS (1998) Routes and travel rates of migrating peregrine falcons Falco peregrinus and Swainson’s hawks Buteo swainsoni in the Western Hemisphere. J Avian Biol 29:433–440

    Google Scholar 

  • Glutz U, Bauer HG (1988) Handbuch der Vögel Mitteleuropas. II/1. Aula, Wiesbaden

  • Godfrey W (1986) The birds of Canada. National Museum of Canada, Ottawa, Canada

    Google Scholar 

  • Gómez-Díaz E, González-Solís J (2007) Geographic assignment of seabirds to their origin: combining morphologic, genetic, and biogeochemical analyses. Ecol Appl 17:1484–1498

    PubMed  Google Scholar 

  • Haig SM, Gratto-Trevor CL, Mullins TD, Colwell MA (1997) Population identification of western hemisphere shorebirds throughout the annual cycle. Mol Ecol 6:413–427

    CAS  Google Scholar 

  • Hake M, Kjellén N, Alerstam T (2001) Satellite tracking of Swedish ospreys Pandion haliaetus: autumn migration routes and orientation. J Avian Biol 32:47–56

    Google Scholar 

  • Hantge E, Schmidt-König K (1958) Vom Herbstzug des Steinschmätzers (Oenanthe oenanthe) auf Wangerooge und Langeoog. J Ornithol 99:142–159

    Google Scholar 

  • Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120:314–326

    Google Scholar 

  • Hobson KA, Wassenaar LI (1997) Linking breeding and wintering grounds of neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers. Oecologia 109:142–148

    Google Scholar 

  • Hobson KA, Wassenaar LI (2008) Tracking animal migration with stable isotopes. Academic/Elsevier, Amsterdam

    Google Scholar 

  • Hobson KA, Hughes KD, Ewins PJ (1997) Using stable isotopes to identify endogenous and exogenous sources of nutrients in eggs of migratory birds: applications to Great Lakes contaminants research. Auk 114:478

    Google Scholar 

  • Jenni L, Jenni-Eiermann S (1987) Der Herbstzug der Gartengrasmücke Sylvia borin in der Schweiz. Ornithol Beob 84:206

    Google Scholar 

  • Jenni L, Winkler R (1994) Moult and ageing of European passerines. Academic, London

    Google Scholar 

  • Kelly JF, Atudorei V, Sharp ZD, Finch DM (2002) Insights into Wilson’s warbler migration from analyses of hydrogen stable-isotope ratios. Oecologia 130:216–221

    Google Scholar 

  • Kipp FA (1958) Zur Geschichte des Vogelzuges auf der Grundlage der Flügelanpassung. Vogelwarte 19:233–242

    Google Scholar 

  • Kipp FA (1959) Der Handflügel-Index als flugbiologisches Maß. Vogelwarte 20:77–86

    Google Scholar 

  • Larson KW, Hobson KA (2009) Assignment to breeding and wintering grounds using stable isotopes: a comment on lessons learned by Rocque et al. J Ornithol 150:709–712

    Google Scholar 

  • Leisler B, Winkler H (2003) Morphological consequences of migration in passerines. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 175–185

    Google Scholar 

  • Lockwood R, Swaddle JP, Rayner JMV (1998) Avian wingtip shape reconsidered: wingtip shape indices and morphological adaptations to migration. J Avian Biol 29:273–292

    Google Scholar 

  • Marchetti K, Price T, Richman A (1995) Correlates of wing morphology with foraging behaviour and migration distance in the genus Phylloscopus. J Avian Biol 26:177–181

    Google Scholar 

  • Marquiss M, Hobson KA, Newton I (2008) Stable isotope evidence for different regional source areas of common crossbill Loxia curvirostra irruptions into Britain. J Avian Biol 39:30–34

    Google Scholar 

  • Martell MS, Henny CJ, Nye PE, Solensky MJ (2001) Fall migration routes, timing, and wintering sites of North American ospreys as determined by satellite telemetry. Condor 103:715–724

    Google Scholar 

  • Mazerolle DF, Hobson KA, Wassenaar LI (2005) Stable isotope and band-encounter analyses delineate migratory patterns and catchment areas of white-throated sparrows at a migration monitoring station. Oecologia 144:541–549

    CAS  PubMed  Google Scholar 

  • Mizutani H (1990) Carbon isotope ratio of feathers reveals feeding behavior of cormorants. Auk 107:400–437

    Google Scholar 

  • Mönkkönen M (1995) Do migrant birds have more pointed wings? A comparative study. Evol Ecol 9:520–528

    Google Scholar 

  • Ottosson U, Sandberg R, Petterson J (1990) Orientation cage and release experiments with migratory wheatears (Oenanthe oenanthe) in Scandinavia and Greenland: the importance of visual cues. Ethology 86:57–70

    Google Scholar 

  • Panov EN (2005) Wheatears of the palaearctic. Ecology, behaviour and evolution of the genus Oenanthe. Pensoft, Sofia

    Google Scholar 

  • Ramos MA, Warner DW (1980) Analysis of North American subspecies of migrant birds wintering in Los Tuxtlas, southern Veracruz, Mexico. In: A Keast, Morton ES (eds) Migrant birds in the neotropics: ecology, behavior, conservation. Smithonian Institution Press, Washington, DC, pp 173–180

    Google Scholar 

  • Rubenstein DR, Chamberlain CP, Holmes RT, Ayres MP, Waldbauer JR, Graves GR, Tuross NC (2002) Linking breeding and wintering ranges of a migratory songbird using stable isotopes. Science 295:1062–1065

    CAS  PubMed  Google Scholar 

  • Sachs L (1984) Angewandte Statitstik, Anwendung statistische Methoden, 6th edn. Springer, Berlin

    Google Scholar 

  • Salomonsen F (1934) La variation géographique et la migration de la traquet motteux. L′oiseau 2:222–225

    Google Scholar 

  • Salomonsen F (1967) Fuglene på Grønland.København. Rhodos: 309–311

  • Salzmann W (1930) Oenanthe oenanthe schiöleri Salom. als Durchzügler von Helgoland. Der Vogelzug 1(4):182–183

    Google Scholar 

  • Schmaljohann H, Dierschke V (2005) Optimal migration and predation risk: a field experiment with northern wheatears (Oenanthe oenanthe). J Anim Ecol 74:131–138

    Google Scholar 

  • Snow DW (1953) The migration of the Greenland wheatear. Ibis 95:377–378

    Google Scholar 

  • SPSS (2006) SPSS version 15.01. 2006. Chicago, IL

  • Stutchbury BJM, Tarof SA, Done T, Gow E, Kramer PM, Tautin J, Fox JW, Afanasyev V (2009) Tracking long-distance songbird migration by using geolocators. Science 323:869

    Google Scholar 

  • Svensson L (1992) Identification guide to European passerines, 4th edn. Mirstatryck, Stockholm

    Google Scholar 

  • Taylor M, Seago M, Allard P, Dorling D (1999) The birds of Norfolk. Christopher Helm, London

    Google Scholar 

  • Tellería JL, Carbonell R (1999) Morphometric variation of five Iberian blackcap Sylvia atricapilla populations. J Avian Biol 30:63–71

    Google Scholar 

  • Tellería JL, Perez-Tris J, Carbonell R (2001) Seasonal changes in abundance and flight-related morphology reveal different migration patterns in Iberian forest passerines. Ardeola 48:27–46

    Google Scholar 

  • Wassenaar LI (2008) An introduction to light stable isotopes for use in terrestrial animal migration studies. In: Hobson KA, Wassenaar LI (eds) Tracking animal migration with stable isotopes, 1st edn. Academic/Elsevier, Amsterdam, pp 21–44

    Google Scholar 

  • Wassenaar LI, Hobson KA (2003) Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isotopes Environ Health Stud 39:211–217

    CAS  PubMed  Google Scholar 

  • Wassenaar LI, Hobson KA (2006) Stable-hydrogen isotope heterogeneity in keratinous materials: mass spectrometry and migratory wildlife tissue subsampling strategies. Rapid Commun Mass Spectrom 20:2505–2510

    CAS  PubMed  Google Scholar 

  • Wenink PW, Baker AJ (1996) Mitochondrial DNA lineages in composite flocks of migratory and wintering dunlins (Calidris alpina). Auk 113:744–756

    Google Scholar 

  • Yerkes T, Hobson KA, Wassenaar LI, Macleod R, Coluccy JM (2008) Stable isotopes (δD, δ13C, δ15N) reveal associations among geographic location and condition of Alaskan northern pintails. J Wildl Manage 72:715–725

    Google Scholar 

  • Zink G (1973) Der Zug europäischer Singvögel. Ein Atlas der Wiederfunde beringter Vögel. Vogelwarte Radolfzell, Radolfzell

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Deutsche Forschungsgemeinschaft (BA 816/15-1) and the European Science foundation, ESF-BIRD Scientific Program. We are grateful to S. Jaquier, M. Rebke, A. Walter, R. Morgenstern and B. Mendel for field assistance at Helgoland. Many thanks to C. Bolshakov and the Biological Station Rybachy, to A. Petersen and the Icelandic Institute of Natural History, to D. Shaw and the Fair Isle Bird Observatory, J. Cortez, C. Peréz and P. Rocca from the Gibraltar Ornithological and Natural History Society and F. Spina for supporting fieldwork. Bird trapping and measurements comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Delingat.

Additional information

Communicated by H. Mouritsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delingat, J., Hobson, K.A., Dierschke, V. et al. Morphometrics and stable isotopes differentiate populations of Northern Wheatears (Oenanthe oenanthe). J Ornithol 152, 383–395 (2011). https://doi.org/10.1007/s10336-010-0599-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-010-0599-4

Keywords

Navigation