Skip to main content

Advertisement

Log in

Predicting the distribution of the crested tinamous, Eudromia spp. (Aves, Tinamiformes)

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

A bioclimatic analysis of the crested tinamous was conducted to explore climatic factors underpinning the distribution of both Eudromia elegans and E. formosa and to evaluate its potential application in paleontological studies. The study utilized records throughout the entire known range of Eudromia spp. in southern South America. Relationships between 20 environmental parameters and the presence of Eudromia species were established, mapping and characterizing their spatial distribution in a geographic information system using BIOCLIM and MAXENT algorithms. The MAXENT prediction map shows a more homogeneous pattern while BIOCLIM showed a patchier pattern. The models applied here generated maps that adjust to the well-known previous distributions of both species. Nevertheless, for Eudromia elegans, the distribution predicted by MAXENT includes areas where it is actually considered absent, and the BIOCLIM prediction does not include some areas where it is presumed present. Eudromia formosa were found in warmer and wetter sites than E. elegans. Low precipitation areas were identified as suitable for Eudromia elegans. Strong differences between the climatic profiles for both Eudromia spp distributions occurred, with the precipitation the most important influence. E. formosa tolerates the highest maximum temperatures, whereas E. elegans supports the lowest temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Araujo M, Cabezas M, Thuiller W, Hannah L, Williams P (2004) Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Change Biol 10:1618–1626

    Google Scholar 

  • Bakkenes M, Alkemade J, Ihle F, Leemans R, Latour J (2002) Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Global Change Biol 8:390–407

    Google Scholar 

  • Bertelli S, Chiappe L (2002) Earliest tinamous (aves: Palaeognathae) from the miocene of argentina and their phylogenetic position. Contrib Sci Nat Hist Mues Los Angeles 502:1–20

    Google Scholar 

  • Bertelli S, Giannini N, Goloboff P (2002) A phylogeny of tinamous (Aves, Palaeognathiformes) based on integumentary characters. Syst Biol 51:959–972

    PubMed  Google Scholar 

  • Bertelli S, Porzecanski A (2004) Tinamou (Tinamidae) systematics: a preliminary combined analysis of morphology and molecules. Ornitol Neotrop 15(Suppl):1–7

    Google Scholar 

  • Bonn A, Schröder B (2001) Habitat models and their transfer for single and multi species groups: a case study of carabids in an alluvial forest. Ecography 24:483–496

    Google Scholar 

  • Braun E, Kimball R (2002) Examining basal avian divergences with mitochondrial sequences: model complexity, taxon sampling, and seqeunce length. Syst Biol 51:614–625

    PubMed  Google Scholar 

  • Busby J (1991) Bioclim—a bioclimatic analisis of the distribution of Fusarium graminearum, F. pseudograminearum and F. culmorum on cereals in Australia. Aust Plant Pathol 31:321–327

    Google Scholar 

  • Cabot J (1992) Family tinamidae (tinamous). In: Hoyo JD, Elliott A, Sargatal J (eds) Handbook of the birds of the world. Lynx Edicions, Barcelona, pp 112–138

    Google Scholar 

  • Cicero C (2004) Barriers to sympatry between avian sibling species (Paridae: Beolophus) in tenuous secondary contact. Evolution 58:1573–1587

    PubMed  Google Scholar 

  • Congalton R, Green K (1999) Assessing the accuracy of remotely sensed data: principles and practices. Lewis Publisher, Boca Raton

    Google Scholar 

  • Cracraft J (1988) The major clades of birds. In: Benton MJ (ed) The phylogeny and classification of the tetrapods. Clarendon Press, Systematics Association Special Volumen, Oxford

    Google Scholar 

  • Cracraft J, Mindell DP (1989) The early history of modern birds: a comparison of molecular and morphological evidence. In: Fernholm B, Bremer K, Jörnvall H (eds) The hierarchy of life. Elsevier, Amsterdam, pp 389–403

    Google Scholar 

  • Chiappe L (1991) Fossil birds from the miocene pinturas formation of southern Argentina. J Verteb Palaeontol 11:21A–22A

    Google Scholar 

  • Davies S (2002) Ratites and tinamous. Oxford University Press, Oxford

    Google Scholar 

  • Echarri F (2006) Análisis bioclimático de la distribución de los tinamiformes (Aves: Palaeognathae) presentes en la Argentina. Tesis de Licenciatura en Ciencias Biológicas, Universidad CAECE, Ciudad Autónoma de Buenos Aires

    Google Scholar 

  • Echarri F, Tambussi C (2005) Caracterización ambiental de la distribución geográfica de las copetonas Eudromia sp (Tinamiformes). In: XI Reunión Argentina de Ornitología, Buenos Aires, p 91

  • Ferrier S, Drielsma M, Manion G, Watson G (2002) Extended statistical approaches to modelling spatial pattern in biodiversity: The north-east New South Wales experience. I. Species-level modelling. Biodiv Conserv 11:2275–2307

    Google Scholar 

  • García-Marquez J (2006) Multi-scale assessment of the potential distribution of two herpetofaunal species. In: International institute for geo-information science and earth observation. Enschede, The Netherlands, p 57

    Google Scholar 

  • García N (1990) Síntesis climatográfica de la república Argentina. Publicación de la Facultad de Ingeniería y Ciencias Hídricas Universidad Nacional del Litoral 36:1–33

    Google Scholar 

  • García N (1992) Síntesis climatográfica de la república Argentina. In: Iriondo M (ed) El holoceno de la Argentina. Edición de Cadinqua Comité argentino de Investigación del Cuaternario, Buenos Aires, pp 79–102

    Google Scholar 

  • García N (1994) South American climatology. Quaternary Int 21:7–27

    Google Scholar 

  • Goolsby J (2004) Potential distribution of the invasive old world climbing fern Lygodium microphyllum in North and South America. Nat Areas J 24:351–353

    Google Scholar 

  • Graham C, Moritz C, Williams S (2006) Habitat history improves prediction of biodiversity in a rainforest fauna. Proc Natl Acad Sci USA 10:632–636

    Google Scholar 

  • Graham C, Ron S, Santos J, Schneider C, Moritz C (2004) Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58:1781–1793

    PubMed  Google Scholar 

  • Guisan A, Thuiller W (2005) Predictive species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Google Scholar 

  • Guisan A, Zimmermann N (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Google Scholar 

  • Hay S, Tucker C, Rogers D, Packer M (1996) Remotely sensed surrogates of meteorological data for the study of the distribution and abundance of arthropod vectors of disease. Ann Trop Med Parasitol 90:1–19

    CAS  PubMed  Google Scholar 

  • Hijmans RJ, Guarino L, Bussink C, Barrantes I & Rojas E (2004) DIVA-GIS: A geographic information system for the analysis of biodiversity data. Manual available at http://www.diva-gis.org.

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Google Scholar 

  • Hugall A, Moritz C, Moussalli A, Stanisic J (2002) Reconciling paleodistribution models and comparative phylogeography in the wet tropics rainforest land snail Gnarosophia bellendenkerensis (Brazier 1875). Proc Natl Acad Sci USA 99:6112–6117

    CAS  PubMed  Google Scholar 

  • Leeuw D, Jia H, Yang L, Liu X, Schmidt K, Skidmore A (2006) Comparing accuracy assessments to infer superiority of image classification methods. Int J Rem Sens 27:223–232

    Google Scholar 

  • Mayr G, Clarke J (2003) The deep divergences of neornithine birds: a phylogenetic analysis of morphological characters. Cladistics 19:527–553

    Google Scholar 

  • Miranda-Ribeiro A (1938) Notas ornithologicas, tinamidae. Revista do Museo Paulista 23:667–788

    Google Scholar 

  • Narosky T, Yzurieta D (2003) Guía para la identificación de las aves de Argentina y Uruguay. Edición de Oro, Vázquez Mazzini Editores, Buenos Aires

    Google Scholar 

  • Nix H (1986) A biogeographic analysis of australian elapid snakes. In: Longmore R (ed) Atlas of elapid snakes of Australia. Australian Government Publishing Sevice, Canberra, pp 4–15

    Google Scholar 

  • Peterson A (2001) Predicting species’ geographic distributions based on ecological niche modeling. Condor 103(3):599–605

    Google Scholar 

  • Peterson A (2003) Predicting the geography of species’ invasions via ecological niche modeling. Quarternary Rev Biol 78:419–433

    Google Scholar 

  • Peterson A, Martinez-Meyer E, Gonzalez-Salazar C (2004) Reconstructing the pleistocene geography of the aphelocoma jays (corvidae). Biodiv Res 10:237–246

    Google Scholar 

  • Phillips S, Anderson R, Schapire R (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Google Scholar 

  • Pikula J, Reml F, Eklova MB, Olesovska Z, Ikulova JP (2002) Geographic information systems in epidemiology - ecology of common vole and distribution of natural foci of tularemia. Acta Veterinaria Brno 78:379–387

    Google Scholar 

  • Porcasi X, Calderón G, Lamfri M, Scavuzzo M, Sabattini M, Polop J (2005) Predictive distribution maps of rodent reservoir species of zoonoses in southern america. Mastozool Neotrop 12:199–216

    Google Scholar 

  • Porzecanski AL (2003) Historical biogeography of the South American aridlands: a molecular study of endemic avian taxa. Doctoral Thesis, Columbia University Press, New York

  • Ricklefs RE (2004) A comprehensive framework for global patterns in biodiversity. Ecol Lett 7:1–15

    Google Scholar 

  • Ridgely R, Allnutt T, Brooks T, McNicol D, Mehlman D, Young B, Zook J (2005) Digital distribution maps of the birds of the western hemisphere, version 2.1, Natureserve. Arlington, Virginia

    Google Scholar 

  • Scotts D, Drielsma M (2003) Developing landscape frameworks for regional conservation planning: an approach integrating fauna spatial distributions and ecological principles. Pac Conserv Biol 8:235–254

    Google Scholar 

  • Schröder B, Richter O (1999/2000) Are habitat models transferable in space and time? J Nat Conserv 8:195–205

    Google Scholar 

  • Schröder B (2004) Institut fur Geookologie (Universitat Potsdam) ROC_AUC calculation software available at http://brandenburg.geoecology.unipotsdam.de/users/schroeder/download.html

  • Short LL (1975) A zoogeographic analysis of the South American Chaco avifauna. Bull Am Mus Nat Hist 154(3):349

    Google Scholar 

  • Skov F, Svenning J (2004) Potential impact of climatic change on the distribution of forest herbs in Europe. Ecography 27:366–380

    Google Scholar 

  • Soberón J, Peterson A (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiv Inf 2:1–10

    Google Scholar 

  • Tambussi C (1989a) Catálogo crítico de los tinamidae (aves:Tinamiformes) fósiles de la república Argentina. Ameghiniana 24:241–244

    Google Scholar 

  • Tambussi C (1989b) Las aves del plioceno tardío-pleistoceno temprano de la provincia de Buenos Aires. In: Facultad de Ciencias Naturales. Universidad Nacional de La Plata, La Plata, Argentina, p 378

    Google Scholar 

  • Tambussi C (1995) Aves. Evolución biológica y climática de la región pampeana durante los últimos 5 millones de años. Un ensayo de correlación con el mediterraneo occidental In: Alberdi M, Leone G, Tonni E (eds) Monografías del Museo Nacional de Ciencias Naturales, Madrid, pp 145–161

  • Tambussi C, Acosta Hospitaleche C (2001) Fossil avifauna from the monte hermoso formation (early pliocene), Buenos Aires, Argentina: Paleonvironmental implications. Reunión Anual de Comunicaciones, Asociación Paleontológica Argentina. Diamante, Entre Ríos, Argentina, p 41

    Google Scholar 

  • Tambussi C, Tonni E (1985) Aves del sitio arqueológico los toldos, cañadón de las cuevas, Santa Cruz. Ameghiniana 22:69–74

    Google Scholar 

  • Tambussi C, Ubilla M, Acosta Hospitaleche C, Perea D (2005) Paleoenvironmental implications of the fossil avifauna from the Sopas formation (late pleistocene), Uruguay. Neues Jahrbuch Geologie Palaeontologie 5:257–268

    Google Scholar 

  • Tambussi C, Acosta Hospitaleche C (2002) Reidos (aves) cuaternarios de Argentina: inferencias paleoambientales. Ameghiniana 39:95–102

    Google Scholar 

  • Tambussi C, Noriega JI (1996) Summary of the avian fossil record from southern South America. Contributions of southern South America to vertebrate paleontology. In: Arratia G (ed) Müncher Geowissenschaftliche Abhandlungen, 30. pp. 245–264

    Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beamount LJ, Collingham YC, Erasmus BFN, Siqueira MFD, Grainger A, Hannah L, Hughes L, Huntley B, Jaarsveld ASV, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    CAS  PubMed  Google Scholar 

  • Thuiller W, Lavorel S, Araujo M, Sykes M, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250

    CAS  PubMed  Google Scholar 

  • Tonni EP, Tambussi C (1986) Las aves del cenozoico de la república Argentina. Simposio “Evolución de los Vertebrados Cenozoicos”. IV Congreso Argentino de Paleontología y Bioestratigrafía, Mendoza, pp 131–142

    Google Scholar 

  • Tuinen MV, Sibley C, Hedges S (2000) The early history of modern birds inferred from DNA sequences of nuclear and mitochondrial ribosomal genes. Mol Biol Evol 17:451–457

    PubMed  Google Scholar 

  • Watkinson A, Gill JA, Hulme M (2004) Flying in the face of climate change: a review of climate change, past, present and future. Ibis 146(Suppl 1):4–10

    Google Scholar 

Download references

Acknowledgments

We thank Nathalie Horlent and Robert Hijmans for their help and suggestions concerning data analysis and figures construction; Paula Posadas and Mariana Picasso for their valuable comments; and CONICET for permanent support to C.P.T. and C.A.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fermín Echarri.

Additional information

Communicated by F. Bairlein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Echarri, F., Tambussi, C. & Hospitaleche, C.A. Predicting the distribution of the crested tinamous, Eudromia spp. (Aves, Tinamiformes). J Ornithol 150, 75–84 (2009). https://doi.org/10.1007/s10336-008-0319-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-008-0319-5

Keywords

Navigation