Skip to main content
Log in

Avian senescence: underlying mechanisms

  • Review
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Candidate mechanisms for physiological aging include free radical production and resulting oxidative damage, progressive erosion of telomeres and cellular senescence, age-dependent trade-offs in hormone signaling pathways, and immunosenescence, leading to an increased risk of infection, autoimmune disease, and cancer. These mechanisms are inter-related, not mutually exclusive, and probably all contribute to the aging phenotype. To date, most studies on mechanisms of aging are based on cell culture or lab animals, but interest in comparative studies is growing rapidly. Compared to mammals, birds have long life spans for their body sizes. Birds also appear to have lower rates of free radical production and oxidative damage than mammals, despite higher levels of oxidative metabolism. High levels of the antioxidant, uric acid, in birds may help protect against oxidative damage. Cultured bird cells are more resistant to oxidative damage than mammal cells, and membrane phospholipids of birds are less susceptible to peroxidation than those of mammals of the same size, but show a similar susceptibility as those of mammals with the same life span. In birds, telomeres shorten with age, and the rate of shortening is proportional to life span. Telomerase has a higher activity in long-lived than in short-lived species. Within a species, short telomeres correlate with reduced survival. Birds have higher plasma glucose than mammals, but lower levels of protein glycation, which contributes to aging damage. Immunosenescence is linked to both oxidative damage and telomere shortening. Patterns of cellular and humoral immunosenescence differ among species in birds. The rate of decline in cell-mediated immune function is inversely correlated with life span. Comparative studies on mechanisms underlying senescence in birds will continue to provide us with valuable information on how aging mechanisms have evolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adamo SA (2004) How should behavioural ecologists interpret measurements of immunity? Anim Behav 68:1443–1449

    Google Scholar 

  • Akbar AN, Beverley PCL, Salmon M (2004) Will telomere erosion lead to a loss of T-cell memory? Natl Rev Immunol 4:737–743

    CAS  Google Scholar 

  • Alonso-Alvarez C, Bertrand S, Devevey GL, Proust J, Faivre B, Sorci G (2004) Increased susceptibility to oxidative stress as a proximate cost of reproduction. Ecol Lett 7:363–368

    Google Scholar 

  • Alonso-Alvarez C, Bertrand S, Devevey GL, Proust J, Faivre B, Chastel O, Sorci G (2006) An experimental manipulation of life-history trajectories and resistance to oxidative stress. Evolution 60:1913–1324

    PubMed  Google Scholar 

  • Andziak B, O’Connor TP, Buffenstein R (2005) Antioxidants do not explain the disparate longevity between mice and the longest-living rodent, the naked mole-rat. Mech Ageing Dev 126:1206–1212

    PubMed  CAS  Google Scholar 

  • Ardia DR (2005) Tree swallows trade off immune function and reproductive effort differently across their range. Ecology 86:2040–2046

    Google Scholar 

  • Arking R (1995) Antioxidant genes and other mechanisms involved in the extended longevity of Drosophila. In: Cutler RG, Packer L, Bertram J, Mori A (eds) Oxidative stress and aging. Birkhauser Verlag, Basel, pp 123–139

    Google Scholar 

  • Aviv A, Levy D, Mangel M (2003) Growth, telomere dynamics and successful and unsuccessful human aging. Mech Ageing Dev 124:829–837

    PubMed  CAS  Google Scholar 

  • Aviv A, Valdes AM, Spector TD (2006) Human telomere biology: pitfalls of moving from the laboratory to epidemiology. Int J Epidemiol 35:1424–1429

    PubMed  Google Scholar 

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    PubMed  CAS  Google Scholar 

  • Barja G (1998) Mitochondrial free radical production and aging in mammals and birds. Ann NY Acad Sci 854:224–238

    PubMed  CAS  Google Scholar 

  • Barja G (2004a) Aging in vertebrates, and the effect of caloric restriction: a mitochondrial free radical production—DNA damage mechanism? Biol Rev 79:235–251

    PubMed  Google Scholar 

  • Barja G (2004b) Mammalian and bird aging, oxygen radicals, and restricted feeding. In: Nyström T, Osiewacz HD (eds) Model systems in aging. Springer, Heidelberg

    Google Scholar 

  • Barja G (2004c) Free radicals and aging. Trends Neurosci 27:595–600

    PubMed  CAS  Google Scholar 

  • Barja G, Herrero A (2000) Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J 14:312–318

    PubMed  CAS  Google Scholar 

  • Barja G, Cadenas S, Rojas C, Pérez-Campo R, López-Torres M (1994) Low mitochondrial free radical production per unit O2 consumption can explain the simultaneous presence of high longevity and high aerobic metabolic rate in birds. Free Radic Biol Med 21:317–328

    CAS  Google Scholar 

  • Bartke A, Coschigano K, Kopchick J, Chandrashekar V, Mattison J, Kinney B, Hauck S (2001) Genes that prolong life: relationships of growth hormone and growth to aging and life span. J Gerontol 56A:B340–349

    CAS  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    PubMed  CAS  Google Scholar 

  • Beuchat CA, Chong CR (1998) Hyperglycemia in hummingbirds and its consequences for hemoglobin glycation. Comp Biochem Physiol A 120:409–416

    CAS  Google Scholar 

  • Blount JD, Metcalfe NB, Arnold KE, Surai PF, Devevey GL, Monaghan P (2003a) Neonatal nutrition, adult antioxidant defenses and sexual attractiveness in the zebra finch. Proc R Soc Lond B 270:1691–1696

    CAS  Google Scholar 

  • Blount JD, Metcalfe NB, Birkhead TR, Surai PF (2003b) Carotenoid modulation of immune function and sexual attractiveness in zebra finches. Science 300:125–127

    PubMed  CAS  Google Scholar 

  • Braun E, Dantzler W (1984) Endocrine regulation of avian renal function. J Exp Zool 232:715–723

    PubMed  CAS  Google Scholar 

  • Brümmendorf TH, Mak J, Sabo KM, Baerlacher GM, Dietz K, Abkowitz JL, Lansdorp PM (2002) Longitudinal studies of telomere length in feline blood cells: implications for hematopoietic stem cell turnover in vivo. Exp Hematol 30:1147–1152

    PubMed  Google Scholar 

  • Burt DW (2002) Origin and evolution of avian microchromosomes. Cytogenet Genet Res 96:97–112

    CAS  Google Scholar 

  • Calder WA (1990) Avian longevity and aging. In: Harrison DE (ed) Genetic effects on aging II. Telford, Caldwell, pp 185–204

  • Calder WAI (1984) Size, Function, and Life History. Harvard University Press, Cambridge

    Google Scholar 

  • Campbell NA, Reece JB (2002) Biology. Benjamin Cummings, San Francisco

    Google Scholar 

  • Campisi J (2003) Cancer and ageing: rival demons? Nature 3:339–349

    CAS  Google Scholar 

  • Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–522

    PubMed  CAS  Google Scholar 

  • Carter SC, Ramsey MM, Sonntag WE (2002) A critical analysis of the role of growth hormone and IGF-1 in aging and lifespan. Trends Genet 18:295–301

    PubMed  CAS  Google Scholar 

  • Cawthon RM, Smith KR, O’Brien E, Sivatchenki A, Kerber RA (2003) Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361:393–395

    PubMed  CAS  Google Scholar 

  • Chaney RCJ, Blemings KP, Bonner J, Klandorf H (2003) Pentosidine as a measure of chronological age in wild birds. Auk 120:394–399

    Google Scholar 

  • Cichon M, Sendecka J, Gustafsson L (2003) Age-related decline in humoral immune function in collared flycatchers. J Evol Biol 6:1205–1210

    Google Scholar 

  • Cini M, Moretti A (1995) Studies on lipid peroxidation and protein oxidation in the aging brain. Neurobiol Aging 16:53–57

    PubMed  CAS  Google Scholar 

  • Costantini D, Fanfani A, Dell’Omo G (2007) Carotenoid availability does not limit the capability of nestling kestrels (Falco tinnunculus) to cope with oxidative stress. J Exp Biol 210:1238–1244

    PubMed  CAS  Google Scholar 

  • Criscuolo F, Gonzalez-Barroso MDM, Bouillaud F, Ricquier D, Miroux B, Sorci G (2005a) Mitochondrial uncoupling proteins: new perspectives for evolutionary ecologists. Am Nat 166:686–699

  • Criscuolo F, Gonzalez-Barroso MDM, Le Maho Y, Ricquier D, Bouillaud F (2005b) Avian uncoupling protein expressed in yeast mitochondria prevents endogenous free radical damage. Proc R Soc Lond B 272:803–810

    Google Scholar 

  • Cutler RG (1991) Antioxidants and aging. Am J Clin Nutr 53:373S–379S

    PubMed  CAS  Google Scholar 

  • de la Fuente M (2002) Effects of antioxidants on immune system ageing. Eur J Clin Nutr 56

  • Dubey A, Forster MJ, Lal H, Sohal R (1996) Effect of age and caloric intake on protein oxidation in different brain regions and on behavioral functions of the mouse. Arch Biochem Biophys 333:189–197

    PubMed  CAS  Google Scholar 

  • Effros RB (2004) Impact of the Hayflick Limit on T cell responses to infection: lessons from aging and HIV disease. Mech Ageing Dev 125:103–106

    PubMed  CAS  Google Scholar 

  • Engelhardt M, Kumar R, Albanell J, Pettengell R, Han W, Moore M (1997) Telomerase regulation, cell cycle, and telomere stability in primitive hematopoietic cells. Blood 90:182–193

    PubMed  CAS  Google Scholar 

  • Epel E, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, Cawthon RM (2004) Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA 101:17312–17315

    Google Scholar 

  • Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:288–290

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of aging. Nature 408:239–247

    PubMed  CAS  Google Scholar 

  • Fraga CG, Shigenaga MK, Park J, Degan P, Ames BN (1990) Oxidative damage to DNA during aging: 8-hydroxy-2′-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci USA 87:4533–4537

    PubMed  CAS  Google Scholar 

  • Garland TJ, Adolph SC (1994) Why not to do two-species comparative studies: limitations on inferring adaptation. Physiol Zool 67:797–828

    Google Scholar 

  • Greider C (1995) Telomerase biochemistry and regulation. In: Blackburn E, Greider C (eds) Telomeres. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 35–68

    Google Scholar 

  • Grune T, Davies KJA (2001) Oxidative processes in aging. In: Masoro EJ, Austad SN (eds) Handbook of the biology of aging. Academic, San Diego, pp 25–58

    Google Scholar 

  • Grupp G, Parwaresch R (2002) Telomerases, telomeres and cancer. Kluwer, New York

    Google Scholar 

  • Guarente G, Kenyon C (2000) Genetic pathways that regulate ageing in model organisms. Nature 408:255–262

    PubMed  CAS  Google Scholar 

  • Hall ME, Nasir L, Daunt F, Gault EA, Croxall JP, Wanless S, Monaghan P (2004) Telomere loss in relation to age and early environment in long-lived birds. Proc R Soc Lond B 271:1571–1576

    CAS  Google Scholar 

  • Hamilton ML, Guo ZM, Fuller CD (2001a) A reliable assessment of 8-oxo-2-deoxyguanosine levels in nuclear and mitochondrial DNA using the sodium iodide method to isolate DNA. Nucleic Acids Res 29:2117–2126

    PubMed  CAS  Google Scholar 

  • Hamilton ML, Remmen HV, Drake JA, Yang H, Guo ZM, Kewitt K, Walter CA, Richardson A (2001b) Does oxidative damage to DNA increase with age? Proc Natl Acad Sci USA 98:10469–10474

    PubMed  CAS  Google Scholar 

  • Han D, Loukianoff S, McLaughlin L (2000) Oxidative stress indices: analytical aspects and significance. In: Sen CK, Packer L, Hänninen O (eds) Handbook of oxidants and antioxidants in exercise. Elsevier Science, Amsterdam, pp 433–483

    Google Scholar 

  • Harley CB (1991) Telomere loss: mitotic clock or genetic time bomb? Mutat Res 256:271–282

    PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    PubMed  CAS  Google Scholar 

  • Harper JM, Wolf N, Galecki AT, Pinkosky SL, Miller RA (2003) Hormone levels and cataract scores as sex-specific, mid-life predictors of longevity in genetically heterogeneous mice. Mech Ageing Dev 124:801–810

    PubMed  CAS  Google Scholar 

  • Haussmann MF (2005) The evolution of avian lifespan: an examination of telomere dynamics and immunosenescence. PhD thesis. Iowa State University, Ames

  • Haussmann MF, Winkler DW, O’Reilly KM, Huntington CE, Nisbet ICT, Vleck CM (2003) Telomeres shorten more slowly in long-lived birds and mammals than in short-lived ones. Proc R Soc Lond B 270:1387–1392

    CAS  Google Scholar 

  • Haussmann MF, Winkler DW, Huntington CE, Nisbet ICT, Vleck CM (2004) Telomerase expression is differentially regulated in birds of differing life span. Ann NY Acad Sci 1019:186–190

    PubMed  CAS  Google Scholar 

  • Haussmann MF, Winkler DW, Huntington CE, Vleck D, Sanneman CE, Hanley D, Vleck CM (2005a) Cell-mediated immunosenescence in birds. Oecologia 145:270–275

    PubMed  Google Scholar 

  • Haussmann MF, Winkler DW, Vleck CM (2005b) Longer telomeres associated with higher survival in birds. Biol Lett 1:212–214

    PubMed  CAS  Google Scholar 

  • Haussmann MF, Winkler DW, Nisbet ICT, Huntington CE, Vleck CM (2007) Telomerase activity is maintained throughout the lifespan of long-lived birds. Exp Gerontol 42:610–618

    Google Scholar 

  • Hazelwood RL (2000) Pancreas. In: Whitow GC (ed) Sturkie’s avian physiology, 5th edn. Academic, San Diego, pp 539–555

    Google Scholar 

  • Herrero A, Barja G (1997) Sites and mechanisms responsible for the low rate of free radical production of heart mitochondria in the long-lived pigeon. Mech Ageing Dev 98:95–111

    PubMed  CAS  Google Scholar 

  • Herrero A, Barja G (1999) 8-oxo-deoxyguanosine levels in heart and brain mitochondrial and nuclear DNA of two mammals and three birds in relation to their different rates of aging. Aging Clin Exp Res 11:294–300

    CAS  Google Scholar 

  • Holman RT (1954) Autoxidation of fats and related substances. In: Holman RT, Lundberg WO, Malkin T (eds) Progress in chemistry of fats and other lipids, vol 2. Pergamon, London, pp 51–98

    Google Scholar 

  • Holmes DJ, Austad SN (1995) Birds as animal models for the comparative biology of aging: a prospectus. J Gerontol Biol Sci 50A:B59–B66

    Google Scholar 

  • Holmes DJ, Flückiger R, Austad SN (2001) Comparative biology of aging in birds: an update. Exp Gerontol 36:869–883

    PubMed  CAS  Google Scholar 

  • Holzenberger M, Dupont J, Ducos B, Leneuve P, Géloen A, Even PC, Cervera P, Le Bouc Y (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187

    PubMed  CAS  Google Scholar 

  • Horak P, Zilmer M, Saks L, Ots I, Karu U, Zilmer K (2006) Antioxidant protection, carotenoids and the cost of immune challenge in greenfinches. J Exp Biol 209:4329–4338

    PubMed  CAS  Google Scholar 

  • Hornsby PJ (2003) Replicative senescence of human and mouse cells in culture: significance for aging research. Mech Ageing Dev 124:853–855

    PubMed  Google Scholar 

  • Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Prior RL (2002) High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J Agric Food Chem 50:4437–4444

    PubMed  CAS  Google Scholar 

  • Hulbert AJ, Faulks SC, Buttemer WA, Else PL (2002) Acyl composition of muscle membranes varies with body size in birds. J Exp Biol 205:3561–3569

    PubMed  CAS  Google Scholar 

  • Hulbert AJ (2003) Life, death and membrane bilayers. J Exp Biol 206:2303–2311

    PubMed  CAS  Google Scholar 

  • Hulbert AJ (2005) On the importance of fatty acid composition of membranes for aging. J Theor Biol 234:277–288

    PubMed  CAS  Google Scholar 

  • Joeng KS, Song EJ, Lee J-J, Lee J (2004) Long lifespan in worms with long telomeric DNA. Nat Genet 36:607–611

    PubMed  CAS  Google Scholar 

  • Johnson RJ, Rideout BA (2004) Uric acid and diet—insights into the epidemic of cardiovascular disease. N Eng J Med 350:1071–1073

    CAS  Google Scholar 

  • Kapahi P, Boulton ME, Kirkwood TBL (1999) Positive correlation between mammalian life span and cellular resistance to stress. Free Radic Biol Med 26:495–500

    PubMed  CAS  Google Scholar 

  • Kilpimaa J, Alatalo RV, Siitari H (2003) Trade-offs between sexual advertisement and immune function in the pied flycatcher (Ficedula hypoleuca). Proc R Soc Lond 271:245–250

    Google Scholar 

  • Kirkwood TBL (2002) Evolution of ageing. Mech Ageing Dev 123:737–745

    PubMed  Google Scholar 

  • Kirkwood TBL, Holliday R (1979) The evolution of ageing and longevity. Proc R Soc Lond 205:531–546

    Article  CAS  PubMed  Google Scholar 

  • Klandorf H, Probert IL, Iqbal M (1999) In the defense against hyperglycemia: an avian strategy. Worlds Poul Sci J 55:251–268

    Google Scholar 

  • Klapper W, Parwaresch R, Krupp G (2001) Telomere biology in human aging and aging syndromes. Mech Ageing Dev 122:695–712

    PubMed  CAS  Google Scholar 

  • Ku HH, Sohal RS (1993) Comparison of mitochondrial pro-oxidant generation and anti-oxidant defenses between rat and pigeon: possible basis of variation in longevity and metabolic potential. Mech Ageing Dev 72:67–76

    PubMed  CAS  Google Scholar 

  • Lambert AJ, Merry BJ (2004) Effect of caloric restriction on mitochondrial reactive oxygen species production and bioenergetics: reversal by insulin. Am J Physiol Regul Integr Comp Physiol 286:R71–R79

    PubMed  CAS  Google Scholar 

  • Lansdorp PM (2005) Role of telomerase in hematopoietic stem cells. Ann NY Acad Sci 1044:220–227

    PubMed  CAS  Google Scholar 

  • Lieber MR, Karanjawala ZE (2004) Ageing, repetitive genomes and DNA damage. Natl Rev Mol Cell Biol 5:69–75

    CAS  Google Scholar 

  • Liu W (2004) DNA oxidation damage of birds: measuring, analyzing and comparing. MSc thesis. Iowa State University, Ames

  • Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW (2005) DNA repair, genome stability, and aging. Cell 120:497–512

    PubMed  CAS  Google Scholar 

  • Longo VD, Finch CE (2003) Evolutionary medicine: from dwarf model systems to healthy centenarians? Science 299:1342–1346

    PubMed  Google Scholar 

  • Lopez-Torres M, Perez-Campo R, Rojas C, Cadenas S, Barja G (1993) Maximum life span in vertebrates: relationship with liver antioxidant enzymes, glutathione system, ascorbate, urate, sensitivity to peroxidation, true malondialdehyde, in vivo H2O2, and basal and maximum aerobic capacity. Mech Ageing Dev 70:177–199

    PubMed  CAS  Google Scholar 

  • Lorenzini A, Tresini M, Austad SN, Cristofalo VJ (2005) Cellular replicative capacity correlates primarily with species body mass not longevity. Mech Ageing Dev 126:1130–1133

    PubMed  Google Scholar 

  • Lozano GA, Lank DB (2002) Seasonal trade-offs in cell-mediated immunosenescence in ruffs (Philomachus pugnax). Proc R Soc Lond B 270:1203–1208

    Google Scholar 

  • Mariani E, Meneghetti A, Formentini I, Neri S, Cattini L, Ravaglia G, Forti P, Facchini A (2003) Telomere length and telomerase activity: effect of ageing on human NK cells. Mech Ageing Dev 124:403–408

    PubMed  CAS  Google Scholar 

  • Martin TE, Møller AP, Merino S, Clobert J (2001) Does clutch size evolve in response to parasites and immunocompetence? Proc Natl Acad Sci USA 98:2071–2076

    PubMed  CAS  Google Scholar 

  • Masoro EJ (2003) Subfield history: caloric restriction, slowing aging, and extending life. Sci Aging Knowledge Environ 26(8):re2. doi: 10.1126/sageke.2003.8.re2

  • Masoro EJ (2005) Overview of caloric restriction and ageing. Mech Ageing Dev 126:913–922

    PubMed  CAS  Google Scholar 

  • McClintock B (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 41:234–282

    Google Scholar 

  • McGraw KJ, Ardia DR (2003) Carotenoids, immunocompetence, and the information content of sexual colors: an experimental test. Am Nat 162:704–712

    PubMed  Google Scholar 

  • McGraw KJ, Hill GE, Navara KJ, Parker RS (2004) Differential accumulation and pigmenting ability of dietary carotenoids in colorful finches. Physiol Biochem Zool 77:484–491

    PubMed  CAS  Google Scholar 

  • McKechnie AE, Wolf BO (2004) The allometry of avian basal metabolic rate: good predictions need good data. Physiol Biochem Zool 77:502–521

    PubMed  Google Scholar 

  • Mecocci P, Polidori MC, Trojano L, Cherubini A, Cecchetti R, Pini G, Straatman M, Monti D, Stahl W, Sies H, Franceschi C, Senin U (2000) Plasma antioxidants and longevity: a study on healthy centenarians. Free Radic Biol Med 28:1243–1248

    PubMed  CAS  Google Scholar 

  • Meyne J, Ratliff RL, Moyzis RK (1989) Conservation of the human telomere sequence (TTAGGG)-n among vertebrates. Proc Natl Acad Sci USA 86:7049–7053

    PubMed  CAS  Google Scholar 

  • Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP, Lanfrancone L, Pelicci PG (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402:309–313

    PubMed  CAS  Google Scholar 

  • Miller RA (1996) The aging immune system: primer and prospectus. Science 273:70–74

    PubMed  CAS  Google Scholar 

  • Miller RA (2001) Biomarkers of aging: prediction of longevity by using age-sensitive T-cell subset determinations in a middle-aged, genetically heterogeneous mouse population. J Gerontol A Biol Sci Med Sci 56A:B180–B186

    Google Scholar 

  • Miller RA, Harper JM, Dysko RC, Durkee SJ, Austad SN (2002) Longer life spans and delayed maturation in wild-derived mice. Exp Biol Med 227:500–508

    CAS  Google Scholar 

  • Monaghan P, Haussmann MF (2006) Do telomere dynamics link lifestyle and lifespan? Trends Ecol Evol 21:47–53

    PubMed  Google Scholar 

  • Monaghan P, Metcalfe NB (2000) Genome size and longevity. Trends Genet 16:331–332

    PubMed  CAS  Google Scholar 

  • Møller AP, De Lope F (1999) Senescence in a short-lived migratory bird: age-dependent morphology, migration, reproduction and parasitism. J Anim Ecol 68:163–171

    Google Scholar 

  • Newton I, Rothery P (1997) Senescence and reproductive value in sparrowhawks. Ecology 78:100–1008

    Google Scholar 

  • Nijnik A, Woodbine L, Marchetti C, Dawson S, Lambe T, Liu C, Rodrigues NP, Crockford TL, Cabuy E, Vindigni A, Enver T, Bell JI, Slijepcevic P, Goodnow CG, Jeggo P, Cornall RJ (2007) DNA repair is limiting for haematopoietic stem cells during ageing. Nature 447

  • Norris K, Evans MR (2000) Ecological immunology: life history trade-offs and immune defense in birds. Behav Ecol 11:19–26

    Google Scholar 

  • Nyström T, Osiewacz HD (2004) Model systems in aging. Springer, Heidelberg

    Google Scholar 

  • Ogburn C, Austad S, Holmes D, Kiklevich V, Gollahon K, Rabinovitch P, Martin G (1998) Cultured renal epithelial cells from birds and mice: enhanced resistance of avian cells to oxidative stress and DNA damage. J Gerontol Biol Sci Med Sci 53A:B287–B292

    CAS  Google Scholar 

  • Ogburn CE, Carlberg K, Ottinger MA, Holmes DJ, Martin GM, Austad SN (2001) Exceptional cellular resistance to oxidative damage in long-lived birds requires active gene expression. J Gerontol 56A:B468–B474

    CAS  Google Scholar 

  • Ortega E, Garcia JJ, De la Fuente M (2000) Aging modulates some aspects of the non-specific immune response of murine macrophages and lymphocytes. Exp Physiol 85:519–525

    PubMed  CAS  Google Scholar 

  • Ottinger MA, Mobarak M, Abdelnabi M, Roth G, Proudman J, Ingram DK (2005) Effects of caloric restriction on reproductive and adrenal systems in Japanese quail: are responses similar to mammals, particularly primates? Mech Ageing Dev 126:967–975

    PubMed  CAS  Google Scholar 

  • Packer L (1995) Oxidative stress, antioxidants, aging and disease. In: Cutler RG, Packer L, Bertram J, Mori A (eds) Oxidative stress and aging. Birkhauser Verlag, Basel, pp 1–14

    Google Scholar 

  • Palacios MG, Cunnick JE, Winkler DW, Vleck CM (2007) Immunosenescence in some but not all immune components in a free-living vertebrate, the tree swallow. Proc R Soc Lond B 274:951–957

    Google Scholar 

  • Pamplona R, Portero-Ortin M, Riba D, Ruiz C, Prat J, Bellmunt MJ, Barja G (1998) Mitochondrial membrane peroxidizability index is inversely related to maximum life span in mammals. J Lipid Res 39:1989–1994

    PubMed  CAS  Google Scholar 

  • Pamplona R, Portero-Otin M, Requena JR, Thorpe SR, Herrero A, Barja G (1999) A low degree of fatty acid unsaturation leads to lower lipid peroxidation and lipoxidation-derived protein modification in heart mitochondria of the longevous pigeon than in the short-lived rat. Mech Ageing Dev 106:283–296

    PubMed  CAS  Google Scholar 

  • Pamplona R, Portero-Ortin M, Riba D, Requena JR, Thorpe SR, Lopez-Torres M, Barja G (2000) Low fatty acid unsaturation: a mechanism for lowered lipoperoxidative modification of tissue proteins in mammalian species with long life spans. J Gerontol A Biol Sci Med Sci 55:B286–B291

    Google Scholar 

  • Pamplona R, Portero-Otin M, Sanz A, Requena JR, Barja G (2004) Modification of the longevity-related degree of fatty acid unsaturation modulates oxidative damage to proteins and mitochondrial DNA in liver and brain. Exp Gerontol 39:725–733

    PubMed  CAS  Google Scholar 

  • Patil CK, Mian IS, Campisi J (2005) The thorny path linking cellular senescence to organismal aging. Mech Ageing Dev 126:1040–1045

    PubMed  Google Scholar 

  • Pauliny A, Wagner RH, Augustiin J, Szeip T, Blomqvist D (2006) Age-independent telomere length predicts fitness in two bird species. Mol Ecol 15:1681–1687

    PubMed  CAS  Google Scholar 

  • Pawelec G, Effros RB, Caruso C, Remarque E, Barnett Y, Solana R (1999) T cells and aging. Front Biosci 4:D216–269

    PubMed  CAS  Google Scholar 

  • Pearl R (1928) The rate of living. Knopf, New York

    Google Scholar 

  • Perez-Campo R, Lopez-Torres M, Cadenas S, Rojas C, Barja G (1998) The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach. J Comp Physiol B 168:149–158

    PubMed  CAS  Google Scholar 

  • Pittman JR, Bross MH (1999) Diagnosis and management of gout. Am Fam Physician 59:1799

    PubMed  CAS  Google Scholar 

  • Pollak MN, Schernhammer ES, Hankinson SE (2004) Insulin-like growth factors and neoplasia. Nat Rev Cancer 4:505–517

    PubMed  CAS  Google Scholar 

  • Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J Agric Food Chem 52:3273–3279

    Google Scholar 

  • Prowse KR, Greider CW (1995) Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc Natl Acad Sci USA 92:4818–4822

    PubMed  CAS  Google Scholar 

  • Rao DV, Boyle GM, Parsons PG, Watson K, Jones GL (2003) Influence of aging, heat shock treatment and in vivo total antioxidant status on gene-expression profile and protein synthesis in human peripheral lymphocytes. Mech Ageing Dev 124:55–69

    Google Scholar 

  • Reed JR, Vukmanovic-Stejic M, Fletcher JM, Soares MVK, Cook JE, Orteu CH, Jackson SE, Birch KE, Foster GR, Salmon M, Beverley PCL, M.H.A R, Akbar AN (2004) Telomere erosion in memory T cells induced by telomerase inhibition at the site of antigenic challenge in vivo. J Exp Med 199:1433–1443

    PubMed  CAS  Google Scholar 

  • Ricklefs RE, Scheuerlein A (2001) Comparison of aging-related mortality among birds and mammals. Exp Gerontol 36:845–857

    PubMed  CAS  Google Scholar 

  • Rincon M, Rudin E, Barzilai N (2005) The insulin-IGF-1 signaling in mammals and its relevance to human longevity. Exp Gerontol 40:873–877

    PubMed  CAS  Google Scholar 

  • Robertson R, Rendell WB (2001) A long-term study of reproductive performance in tree swallows: the influence of age and senescence on output. J Anim Ecol 70:1014–1031

    Google Scholar 

  • Romanyukha AA, Yashin AI (2003) Age related changes in population of peripheral T cells: towards a model of immunosenescence. Mech Ageing Dev 124:433–443

    PubMed  Google Scholar 

  • Royle NJ, Surai PF, Hartley IR (2001) Maternally derived androgens and antioxidants in bird eggs: complementary but opposing effects? Behav Ecol 12:381–385

    Google Scholar 

  • Rubin H (2002) The disparity between human cell senescence in vitro and lifelong replication in vivo. Nat Biotechnol 20:675–681

    PubMed  CAS  Google Scholar 

  • Saino N, Ambrosini R, Martinelli R, Møller AP (2002) Mate fidelity, senescence in breeding performance and reproductive trade-offs in the barn swallow. J Anim Ecol 71:309–319

    Google Scholar 

  • Saino N, Ferrari RP, Romano M, Rubolini D, Møller AP (2003) Humoral immune response in relation to senescence, sex and sexual ornamentation in the barn swallow (Hirundo rustica). J Evol Biol 16:1127–1134

    Google Scholar 

  • Sedivy JM (1998) Can ends justify the means? Telomeres and the mechanisms of replicative senescence and immortalization in mammalian cells. Proc Natl Acad Sci USA 95:9078–9081

    PubMed  CAS  Google Scholar 

  • Serra V, von Zglinicki T, Lorenz M, Saretzki G (2003) Extracellular superoxide dismutase is a major antioxidant in human fibroblasts and slows telomere shortening. J Biol Chem 278:6824–6830

    PubMed  CAS  Google Scholar 

  • Serrano AL, Andres V (2004) Telomeres and cardiovascular disease. Does size matter? Circ Res 94:575–584

    PubMed  CAS  Google Scholar 

  • Short R, Williams DD, Bowden DM (1997) Circulating antioxidants as determinants of the rate of biological aging in pigtailed macaques (Macaca nemestrina). J Gerontol Biol Sci 52A:B26–B38

    CAS  Google Scholar 

  • Simoyi MF, Van Dyke K, Klandorf H (2002) Manipulation of plasma uric acid in broiler chicks and its effect on leukocyte oxidative activity. Am J Physiol Regul Integr Comp Physiol 282:R791–R796

    PubMed  CAS  Google Scholar 

  • Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction and aging. Science 273:59–63

    PubMed  CAS  Google Scholar 

  • Sohal RS, Svensson I, Sohal BH, Brunk UT (1989) Superoxide anion radical production in different species. Mech Ageing Dev 49:129–135

    PubMed  CAS  Google Scholar 

  • Sohal RS, Svensson I, Brunk UT (1990) Hydrogen peroxide production by liver mitochondria in different species. Mech Ageing Dev 53:209–215

    PubMed  CAS  Google Scholar 

  • Sohal RS, Mockett RJ, Orr WC (2002) Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Radic Biol Med 33:575–586

    PubMed  CAS  Google Scholar 

  • Son NH, Joyce B, Hieatt A, Chrest FJ, Yanovski J, Weng N-P (2003) Stable telomere length and telomerase expression from naive to memory B-lymphocyte differentiation. Mech Ageing Dev 124:427–432

    PubMed  CAS  Google Scholar 

  • Speakman JR (2005a) Correlations between physiology and lifespan—two widely ignored problems with comparative studies. Aging Cell 4:167–175

    PubMed  CAS  Google Scholar 

  • Speakman JR (2005b) Body size, energy metabolism and lifespan. J Exp Biol 208:1717–1730

    PubMed  Google Scholar 

  • Speakman JR, Selman C, McLaren JS, Harper JE (2002) Living fast, dying when? The links between energetics and aging. J Nutr 132:1583–1597

    Google Scholar 

  • St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277

  • Stadtman ER (1992) Protein oxidation and aging. Science 257:1220–1224

    PubMed  CAS  Google Scholar 

  • Stedtman ER, Levine RL (2000) Protein oxidation. Ann NY Acad Sci 899:191–208

    Article  Google Scholar 

  • Tahara S, Matsuo M, Kaneko T (2001) Age-related changes in oxidative damage to lipids and DNA in rat skin. Mech Ageing Dev 122:415–426

    PubMed  CAS  Google Scholar 

  • Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, Yamaguchi-Iwai Y, Shinohara A, Takeda S (1998) Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 17:5497–5508

    PubMed  CAS  Google Scholar 

  • Tavecchia G, Pradel R, Boy V, Johnson AR, Cezilly F (2001) Sex- and age-related variation in survival and cost of first reproduction in greater flamingos. Ecology 82:165–174

    Article  Google Scholar 

  • Taylor HA, Delany ME (2000) Ontogeny of telomerase in chicken: impact of downregulation on pre- and postnatal telomere length in vivo. Dev Growth Differ 42:613–621

    PubMed  CAS  Google Scholar 

  • Tella JL, Scheuerlein A, Ricklefs RE (2001) Is cell-mediated immunity related to the evolution of life-history strategies in birds? Proc R Soc Lond 269:1059–1066

    Google Scholar 

  • Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, Aviv A, Spector TD (2005) Obesity, cigarette smoking, and telomere length in women. Lancet 366:662–664

    Google Scholar 

  • van de Pol M, Verhulst S (2006) Age-dependent traits: a new statistical model to separate within- and between-individual effects. Am Nat 167:766–773

    PubMed  Google Scholar 

  • Vleck CM, Vleck D (2002) Physiological condition and reproductive consequences in Adélie penguins. Integr Comp Biol 42:76–83

    Google Scholar 

  • Vleck CM, Haussmann MF, Vleck D (2003) The natural history of telomeres: tools for aging animals and exploring the aging process. Exp Gerontol 38:791–795

    PubMed  CAS  Google Scholar 

  • von Schantz T, Bensch S, Grahn M, Hasselquist D, Wittzell H (1999) Good genes, oxidative stress and condition-dependent sexual signals. Proc R Soc Lond B 266:1–12

    Google Scholar 

  • von Zglinicki T (2000) Role of oxidative stress in telomere length regulation and replicative senescence. Ann NY Acad Sci 908:99–110

    Article  Google Scholar 

  • von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27:339–344

    Google Scholar 

  • von Zglinicki T, Pilger R, Sitte N (2000) Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radic Biol Med 28:64–74

    Google Scholar 

  • Walker GA, Lithgow GJ (2003) Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell 2:131–139

    PubMed  CAS  Google Scholar 

  • Wallis JW (2004) A physical map of the chicken genome. Nature 432:761–764

    PubMed  CAS  Google Scholar 

  • Watson JD (1972) Origin of concatameric T4 DNA. Nat New Biol 239:197–201

    PubMed  CAS  Google Scholar 

  • Weinert BT, Timiras PS (2003) Physiology of aging. Invited review: theories of aging. J Appl Physiol 95:1706–1716

    PubMed  CAS  Google Scholar 

  • Weng N, Levine BL, June CH, Hodes RJ (1995) Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc Natl Acad Sci 92:11091–11094

    PubMed  CAS  Google Scholar 

  • White CR, Seymour RS (2005) Allometric scaling of mammalian metabolism. J Exp Biol 208:1611–1619

    PubMed  CAS  Google Scholar 

  • Wiersma P, Selman C, Speakman JR, Verhulst S (2004) Birds sacrifice oxidative protection for reproduction. Proc R Soc Lond B 271[Suppl]:S360–S363

    CAS  Google Scholar 

  • Wise PM (2000) Neuroendocrine correlates of aging. Neuroendocrinol Physiol Med 371–387

  • Wong K-K, Maser RS, Bachoo RM, Menon J, Carrasco DR, Gu Y, Alt FW, DePinho RA (2003) Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature 421:643–648

    PubMed  CAS  Google Scholar 

  • Wright WE, Shay JW (2002) Historical claims and current interpretations of replicative aging. Nat Biotechnol 20:682–688

    PubMed  CAS  Google Scholar 

  • Wu X, Amos CI, Zhu Y, Zhao H, Grossman BH, Shay JW, Luo S, Hong WK, Spitz MR (2003) Telomere dysfunction: a potential cancer predisposition factor. J Natl Cancer Inst 95:1211–1218

    Article  PubMed  CAS  Google Scholar 

  • Yan LJ, Levine RL, Sohal RS (1997) Oxidative damage during aging targets mitochondrial aconitase. Proc Natl Acad Sci USA 94:11168–11172

    PubMed  CAS  Google Scholar 

  • Zeichner SL, Palumbo P, Feng Y, Xiao X, Gee D, Sleasman J, Goodenow M, Riggar R, Dimitrov D (1999) Rapid telomere shortening in children. Blood 93:2824–2830

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Pat Monaghan and the International Ornithological Congress for helping to organize the IOC symposium on Avian Senescence. David Winkler has helped to shape our thinking about aging in birds. The research described here was supported by the National Institute on Aging under Grant No RO3 AGO22207 and the National Science Foundation under Grant No. 0408008. All experiments comply with the current laws of the United States and the Iowa State University Committee on Animal Care approved protocols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol M. Vleck.

Additional information

Communicated by F. Bairlein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vleck, C.M., Haussmann, M.F. & Vleck, D. Avian senescence: underlying mechanisms. J Ornithol 148 (Suppl 2), 611–624 (2007). https://doi.org/10.1007/s10336-007-0186-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-007-0186-5

Keywords

Navigation