Skip to main content
Log in

Phylogenetic relationships among some Ateles species: the use of chromosomic and molecular characters

  • Original Article
  • Published:
Primates Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

As with most platyrrhines, the systematics of Ateles is under discussion. In order to help clarify its systematic, we employed chromosomic and molecular characters to analyze the phylogenetic relationship among some species of the genus Ateles. Chromosomic studies were conducted on 14 atelid specimens: eight Ateles from A. paniscus, A. chamek, A. belzebuth and A. geoffroyi, and six Alouatta caraya. Ateles paniscus showed 2N=32, whereas A. chamek, A. belzebuth and A. geoffroyi presented 2N=34, XX/XY (with a submetacentric X and a variable Y) corroborated by male meiosis. Nucleotide sequence variation at the mitochondrial cytochrome c oxidase subunit II gene (COII) was analyzed in ten New World monkey specimens. Parsimony trees showed consistent phylogenetic relationships using both chromosomic forms and mitochondrial COII gene sequences as characters. Particularly, chromosomic phylogenies showed A. hybridus as a divergent taxon from the remaining group, whereas A. chamek, A. belzebuth and A. marginatus form an unresolved clade with A. geoffroyi as sister group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Armada JLA, Barroso CML, Lima MMC, Muñiz JAPC, Seuánez HN (1987) Chromosome studies in Alouatta belzebul. Am J Primatol 13:283–296

    Google Scholar 

  • Ascunce MS, Hasson ER, Mudry MD (2003) COII as a useful tool for phylogenetic studies in some genera of New World monkeys (Primates, Platyrrhini). Zool Scripta 32(5):397–406

    Article  Google Scholar 

  • Ashley MV, Vaughn JL (1995) Owl monkeys (Aotus) are highly divergent in mitochondrial cytochrome c oxidase (COII) sequences. Int J Primatol 16:793–806

    Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Baker RJ, Qumsiyeh MB, Hood CS (1989) Role of chromosomal banding patters in understanding mammalian evolution. Curr Mammal 1:67–95

    Google Scholar 

  • Benirschke K (1975) Biomedical research. In: Institute of Laboratory Animal Resources (eds) Research in zoos and aquariums. National Academy of Sciences, Washington, DC, pp 3–11

  • Buckton K, Evans H (1973) Method for the analysis of human chromosome aberrations. WHO Publications, Geneva

    Google Scholar 

  • Coates DJ, Shaw DD (1984) The chromosomal component of reproductive isolation in the grasshopper Caledia captiva. III. Chiasma distribution patterns in a new chromosomal taxon. Heredity 53:85–100

    Google Scholar 

  • Collins AC (1999) Phylogenetic relationship among populations of spider monkeys (Ateles spp.) based on mitochondrial and nuclear DNA variation. Diss Abst Int A60(1):180

    Google Scholar 

  • Collins AC, Dubach J (2000a) Phylogenetic relationships of spider monkeys (Ateles) based on mitochondrial DNA variation. Int J Primatol 21(3):381–420

    Article  Google Scholar 

  • Collins AC, Dubach J (2000b) Biogeographic and ecological forces responsible for speciation in Ateles. Int J Primatol 21(3):421–444

    Article  Google Scholar 

  • Consigliere S, Stanyon R, Koehler U, Agoramoorthy G, Wienberg J (1996) Chromosome painting defines genomic rearrangements between red howler monkey subspecies. Chromosome Res 4:264–270

    CAS  PubMed  Google Scholar 

  • Consigliere S, Stanyon R, Koehler U, Arnold N, Wienberg J (1998) In situ hybridization (FISH) maps chromosomal homologies between Alouatta belzebul (Platyrrhini, Cebidae) and other primates and reveals extensive interchromosomal rearrangements between howler monkey genomes. Am J Primatol 46:119–133

    Article  CAS  PubMed  Google Scholar 

  • Cortés-Ortiz L, Bermingham E, Rico C, Rodríguez-Luna E, Sampaio I, Ruíz-García M (2003) Molecular systematics and biogeography of the Neotropical monkey genus, Alouatta. Mol Phylogenet Evol 26:64–81

    PubMed  Google Scholar 

  • Coyne JA, Orr HA (1989) Patterns of speciation in Drosophila. Evolution 43:362–381

    Google Scholar 

  • De Boer LEM, De Bruijn M (1990) Chromosomal distinction between the red-faced and black-faced black spider monkeys (Ateles paniscus paniscus and Ateles paniscus chamek). Zoo Biol 9:307–316

    Google Scholar 

  • De Oliveira EH, Neusser M, Figuereido WB, Nagamachi C, Pieckzarka JC, Sbalqueiro IJ, Wienberg J, Muller S (2002) The phylogeny of howler monkeys (Alouatta, Platyrrhini): reconstruction by multicolor cross-species chromosome painting. Chromosome Res 10:669–683

    Article  PubMed  Google Scholar 

  • Dutrillaux B, Couturier J, Viegas-Pequignot E (1986) Evolution chromosomique de Platyrhiniens. Mammalia 50:56–81

    Google Scholar 

  • Dutrillaux B, Muleris M, Couturier J (1988) Chromosomal evolution of Cercopithecinae. In: Gautier-Hion A, Bourliere F, Gautier JP, Kingdon J (eds) A primate radiation: evolutionary biology of the African guenons. Cambridge University Press, Cambridge, pp 150–159

    Google Scholar 

  • Egozcue J, Perkins EM (1970) The chromosomes of Humboldt’s woolly monkey (Lagothrix lagothricha, Humboldt 1812). Folia Primatol 12:77–80

    CAS  PubMed  Google Scholar 

  • Egozcue J, Vilarasau de Egozcue M (1966) The chromosome complement of the Howler monkey (Alouatta caraya, Humboldt 1812). Cytogenet Cell Genet 5:20–27

    CAS  Google Scholar 

  • Egozcue J, Perkins EM, Hagemenas F, Ford DM (1969) The chromosomes of some platyrrhini (Callicebus, Ateles and Saimiri). Folia Primatol 11:17–27

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogeny: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Ferrari SF, Lopes MA (1996) Primate populations in eastern Amazonia. In: Norconck MA, Rosenberger AL, Garber PA (eds) Adaptative radiations of neotropical primates. Plenum, New York, pp 53–55

    Google Scholar 

  • Figueiredo WB, Carvalho-Filho NM, Schneider H, Sampaio I (1998) Mitochondrial DNA sequences and the taxonomic status of Alouatta seniculus populations in northeastern Amazonia. Neotrop Primates 6(3):73–77

    Google Scholar 

  • Froehlich JW, Supriatna J, Froehlich PH (1991) Morphometric analysis of Ateles: systematics and biogeographic implications. Am J Primatol 25:1–22

    Google Scholar 

  • García Haro F (2000) Evolución cromosómica en Simiiformes. Homologías, Reorganizaciones y Heterocromatina. Tesis Doctoral, Universidad Autónoma de Barcelona, España, 272 p

  • Garcia M, Caballin MR, Aragonés J, Goday C, Egozcue J (1975) Banding patterns of the chromosomes of Ateles geoffroyi with description of two cases of pericentric inversion. J Med Primatol 4:108–113

    CAS  PubMed  Google Scholar 

  • Groves C (2001) In: D’Araujo E (ed) Primate taxonomy. Smithsonian Institution, Washington and London, 350 pp

  • John B, King M (1977) Heterochromatin variation in Cryptobothrus chrysophorus. I. Chromosome differentiation in natural populations. Chromosoma 64:219–239

    Article  Google Scholar 

  • Kellogg R, Goldman EA (1944) Review of the spider monkeys. Proc US Nat Mus 96:1–45

    Google Scholar 

  • Kimura M (1980) A simple method for stimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    CAS  PubMed  Google Scholar 

  • King M (1981) Chromosome change and speciation in lizards. In: Atchley WR, Woodruff DS (eds) Evolution and speciation. Cambridge University Press, Cambridge, pp 262–285

    Google Scholar 

  • King M (1987) Chromosomal rearrangements, speciation and the theoretical approach. Heredity 59:1–6

    Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2—Mol Evol Genet Anal Ver. 2 [Computer software]. Bioinformatics 17:1244–1245

    Article  CAS  PubMed  Google Scholar 

  • Kunkel LM, Heltne PG, Borgaonkar DS (1980) Chromosomal variation and zoogeography in Ateles. Int J Primatol 1:223–232

    Google Scholar 

  • Medeiros MA, Barros RMS, Pieczarka JC, Nagamachi CY, Ponsà M, García M, García F, Egozcue J (1997) Radiation and speciation of spider monkeys genus Ateles, from the cytogenetic viewpoint. Am J Primatol 42:167–178

    CAS  PubMed  Google Scholar 

  • Meireles CM, Czelusniak J, Schneider MPC, Muniz JAPC, Brigido MC, Ferreira HS, Goodman M (1999) Molecular phylogeny of ateline New World monkeys (Platyrrhini, Atelinae) based on γ-globin gene sequences: evidence that Brachyteles is the sister group of Lagothrix. Mol Phylogenet Evol 12(1):10–30

    Article  CAS  PubMed  Google Scholar 

  • Mudry MD, Rahn M, Gorostiaga M, Hick A, Merani MS, Solari AJ (1998) Revised karyotype of Alouatta caraya (Primates: Platyrrhini) based on synaptonemal complex and banding analyses. Hereditas 128:9–16

    CAS  PubMed  Google Scholar 

  • Mudry MD, Rahn IM, Solari AJ (2001) Meiosis and chromosome painting of sex chromosome systems in Ceboidea. Am J Primatol 54:65–78

    CAS  PubMed  Google Scholar 

  • Nagamachi CY, Pieckzarka JC, Barros RM, Schwarz M, Muniz JA, Mattevi MS (1996) Chromosomal relationship and phylogenetic and clustering analyses on genus Callithrix group Argentata (Callithrichidae, Primates). Cytogenet Cell Genet 72 (4):331–338

    CAS  PubMed  Google Scholar 

  • Nieves M (2002) Contribución de la Citogenética para la identificación de especies animales en cautiverio: El ejemplo de los Primates Neotropicales. Tesis de Licenciatura en Ciencias Biológicas. Universidad de Buenos Aires, Argentina, 77 p

  • Nunes A (1995) Status, distribution and viability of wild populations of Ateles belzebuth marginatus. Neotrop Primates 3:17–18

    Google Scholar 

  • Pieczarka JC, Nagamachi CY, Barros RMS (1989) The karyotype of Ateles paniscus paniscus (Cebidae, Primates):2n=32. Rev Brasil Genet 12:543–551

    Google Scholar 

  • Rahn M, Mudry MD, Merani S, Solari AJ (1996) Meiotic behavior of the X1X2Y1Y2 quadrivalent of the primate Alouatta caraya. Chromosome Res 4:350–356

    CAS  PubMed  Google Scholar 

  • Ruiz-García M, Alvarez D (2003) RFLP Analysis of mDNA from six platyrrhine genera: phylogenetic inferences. Folia Primatol 74:59–70

    Google Scholar 

  • Ruvolo M, Disotell TR, Allard MW, Brown WM, Honeycutt RL (1991) Resolution of the African hominoid trichotomy by use of a mitochondrial gene sequence. Proc Natl Acad Sci USA 88:1570–1574

    CAS  PubMed  Google Scholar 

  • Rylands AB, Schneider H, Langguth A, Mittermeier RA, Groves CP, Rodriguez-Luna E (2000) An assessment of the diversity of New World primates. Neotrop Primates 8(2):61–93

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sampaio Da Cunha MIC, Schneider Cruz MP, Schneider H (1991) Contribution of genetic distances studies to the taxonomy of Ateles, particularly Ateles paniscus paniscus and Ateles paniscus chamek. Int J Primatol 14(6):895–903

    Google Scholar 

  • Schneider H (2000) The current status of the New World monkey phylogeny. Annals Acad Brasil Cienc 72(2):165–172

    Google Scholar 

  • Seabright M (1971) A rapid banding technique for human chromosomes. Lancet ii(2):971–972

    Article  Google Scholar 

  • Solari AJ (1980) Synaptonemal complexes and associated structures in microspread human spermatocytes. Chromosoma 81:315–337

    CAS  PubMed  Google Scholar 

  • Summer AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306

    CAS  PubMed  Google Scholar 

  • Swofford DL (1998) PAUP* beta version. Phylogenetic analysis using parsimony (*and other methods). Computer Program. Sinauer, Sunderland, Massachusetts

    Google Scholar 

  • Tagliaro CH, Schneider MPC, Schneider H, Sampaio IC, Stanhope MJ (1997) Marmoset phylogenetics, conservation perspectives, and evolution of mtDNA control region. Mol Biol Evol 14:674–684

    CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Viegas Péquignot E, Koiffmann CP, Dutrillaux B (1985) Chromosomal phylogeny of Lagothrix, Brachyteles and Cacajao. Cyotgenet Cell Genet 39:99–104

    Google Scholar 

  • Wienberg J, Stanyon R (1997) Comparative painting of mammalian chromosomes. Curr Opin Genet Dev 7:784–791

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to FCEyN at the Buenos Aires Universty (UBA), particularly to “Departamento de Ecología, Genética y Evolución” where the research project was developed, and to different zoos and their technical team for providing specimen material. Special thanks are extended to Dr. E. Rodriguez-Luna and D. Canales-Espinosa from “Instituto de Neuroetología”, Universidad Veracruzana, Xalapa, Veracruz, México, for supporting the study of the Ateles geoffroyi male specimen performed at Catemaco and Dr. L.Cortés-Ortiz for her excellent assistance in the field. We also acknowledge Dr.V. Szapkievich for helping with the karyological work, Dr. A.J. Solari and Ben Burkley for comments on the manuscript, and CONICET for the Doctoral Fellowship awarded M.S.A. This project was funded by CONICET (grants MDM-PIP 4431/97-2000 and EH-PEI 012/97-2000) and UBACyT grants (MDM-IX 020/97-2000 and EH-TX067/97-2000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariela Nieves.

About this article

Cite this article

Nieves, M., Ascunce, M., Rahn, M. et al. Phylogenetic relationships among some Ateles species: the use of chromosomic and molecular characters. Primates 46, 155–164 (2005). https://doi.org/10.1007/s10329-004-0120-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10329-004-0120-x

Keywords

Navigation