Skip to main content
Log in

Genetische Ursachen epileptischer Enzephalopathien

Genetic etiologies of epileptic encephalopathies

  • Leitthema
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Zusammenfassung

Genetisch bedingte Erkrankungen stellen eine wichtige Ursache schwerer frühkindlicher Epilepsiesyndrome und epileptischer Enzephalopathien dar. In den letzten Jahren wurden zahlreiche verantwortliche Gene identifiziert. Das phänotypische Spektrum bekannter genetisch bedingter Epilepsieformen wurde erheblich erweitert. Die Aufklärung genetischer Ursachen bedeutet die ätiologische Klärung, ermöglicht die genetische Beratung betroffener Familien und eröffnet in einigen Fällen spezifische Behandlungsmöglichkeiten. Im Rahmen dieses Beitrags werden Krankheitsbilder, genetische Grundlagen und spezifische Therapieoptionen beschrieben sowie Einschätzungen der diagnostischen Bedeutung der einzelnen Gene gegeben.

Abstract

Genetically determined disorders comprise an important etiological entity for severe infantile epilepsies and epileptic encephalopathies. In the past decade, several causative genes have been identified. In addition, clinical genetic studies have revealed a broadened phenotypic spectrum for various disease-related genes. Identification of the underlying genetic causes will allow for an etiological diagnosis and genetic counseling of affected families. In addition, specific therapeutic options exist for several disorders. In this review, the clinical picture, genetic causes, and relevant therapeutic options are described. Furthermore, the diagnostic relevance of genetic testing with regard to particular genes and disease entities is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1

Literatur

  1. Amir RE, Van Den Veyver IB, Wan M et al (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188

    Article  PubMed  CAS  Google Scholar 

  2. Ariani F, Hayek G, Rondinella D et al (2008) FOXG1 is responsible for the congenital variant of Rett syndrome. Am J Hum Genet 83:89–93

    Article  PubMed  CAS  Google Scholar 

  3. Bok LA, Maurits NM, Willemsen MA et al (2010) The EEG response to pyridoxine-IV neither identifies nor excludes pyridoxine-dependent epilepsy. Epilepsia 51:2406–2411

    Article  PubMed  Google Scholar 

  4. Borgatti R, Zucca C, Cavallini A et al (2004) A novel mutation in KCNQ2 associated with BFNC, drug resistant epilepsy, and mental retardation. Neurology 63:57–65

    PubMed  CAS  Google Scholar 

  5. Claes L, Del-Favero J, Ceulemans B et al (2001) De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet 68:1327–1332

    Article  PubMed  CAS  Google Scholar 

  6. De Vivo DC, Trifiletti RR, Jacobson RI et al (1991) Defective glucose transport across the blood-brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med 325:703–709

    Article  Google Scholar 

  7. Dedek K, Fusco L, Teloy N et al (2003) Neonatal convulsions and epileptic encephalopathy in an Italian family with a missense mutation in the fifth transmembrane region of KCNQ2. Epilepsy Res 54:21–27

    Article  PubMed  CAS  Google Scholar 

  8. Depienne C, Bouteiller D, Keren B et al (2009) Sporadic infantile epileptic encephalopathy caused by mutations in PCDH19 resembles Dravet syndrome but mainly affects females. PLoS Genet 5:e1000381

    Article  PubMed  Google Scholar 

  9. Deprez L, Weckhuysen S, Holmgren P et al (2010) Clinical spectrum of early-onset epileptic encephalopathies associated with STXBP1 mutations. Neurology 75:1159–1165

    Article  PubMed  CAS  Google Scholar 

  10. Dibbens LM, Tarpey PS, Hynes K et al (2008) X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nat Genet 40:776–781

    Article  PubMed  CAS  Google Scholar 

  11. Dravet C, Bureau M, Oguni H et al (2005) Severe myoclonic epilepsy in infancy: Dravet syndrome. Adv Neurol 95:71–102

    PubMed  Google Scholar 

  12. Elia M, Falco M, Ferri R et al (2008) CDKL5 mutations in boys with severe encephalopathy and early-onset intractable epilepsy. Neurology 71:997–999

    Article  PubMed  CAS  Google Scholar 

  13. Evans JC, Archer HL, Colley JP et al (2005) Early onset seizures and Rett-like features associated with mutations in CDKL5. Eur J Hum Genet 13:1113–1120

    Article  PubMed  CAS  Google Scholar 

  14. Gallagher RC, Van Hove JL, Scharer G et al (2009) Folinic acid-responsive seizures are identical to pyridoxine-dependent epilepsy. Ann Neurol 65:550–556

    Article  PubMed  CAS  Google Scholar 

  15. Heron SE, Crossland KM, Andermann E et al (2002) Sodium-channel defects in benign familial neonatal-infantile seizures. Lancet 360:851–852

    Article  PubMed  CAS  Google Scholar 

  16. Jansen FE, Sadleir LG, Harkin LA et al (2006) Severe myoclonic epilepsy of infancy (Dravet syndrome): recognition and diagnosis in adults. Neurology 67:2224–2226

    Article  PubMed  CAS  Google Scholar 

  17. Juberg RC, Hellman CD (1971) A new familial form of convulsive disorder and mental retardation limited to females. J Pediatr 79:726–732

    Article  PubMed  CAS  Google Scholar 

  18. Kalscheuer VM, Tao J, Donnelly A et al (2003) Disruption of the serine/threonine kinase 9 gene causes severe X-linked infantile spasms and mental retardation. Am J Hum Genet 72:1401–1411

    Article  PubMed  CAS  Google Scholar 

  19. Kamiya K, Kaneda M, Sugawara T et al (2004) A nonsense mutation of the sodium channel gene SCN2A in a patient with intractable epilepsy and mental decline. J Neurosci 24:2690–2698

    Article  PubMed  CAS  Google Scholar 

  20. Kato M, Saitoh S, Kamei A et al (2007) A longer polyalanine expansion mutation in the ARX gene causes early infantile epileptic encephalopathy with suppression-burst pattern (Ohtahara syndrome). Am J Hum Genet 81:361–366

    Article  PubMed  CAS  Google Scholar 

  21. Kurian MA, Meyer E, Vassallo G et al (2010) Phospholipase C beta 1 deficiency is associated with early-onset epileptic encephalopathy. Brain 133:2964–2970

    Article  PubMed  Google Scholar 

  22. Liao Y, Anttonen AK, Liukkonen E et al (2010) SCN2A mutation associated with neonatal epilepsy, late-onset episodic ataxia, myoclonus, and pain. Neurology 75:1454–1458

    Article  PubMed  CAS  Google Scholar 

  23. Marco EJ, Abidi FE, Bristow J et al (2008) ARHGEF9 disruption in a female patient is associated with X linked mental retardation and sensory hyperarousal. J Med Genet 45:100–105

    Article  PubMed  CAS  Google Scholar 

  24. Marini C, Mei D, Parmeggiani L et al (2010) Protocadherin 19 mutations in girls with infantile-onset epilepsy. Neurology 75:646–653

    Article  PubMed  CAS  Google Scholar 

  25. Millichap JJ, Koh S, Laux LC et al (2009) Child neurology: Dravet syndrome: when to suspect the diagnosis. Neurology 73:e59–e62

    Article  PubMed  Google Scholar 

  26. Mills PB, Footitt EJ, Mills KA et al (2010) Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency). Brain 133:2148–2159

    Article  PubMed  Google Scholar 

  27. Mills PB, Struys E, Jakobs C et al (2006) Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat Med 12:307–309

    Article  PubMed  CAS  Google Scholar 

  28. Mills PB, Surtees RA, Champion MP et al (2005) Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5’-phosphate oxidase. Hum Mol Genet 14:1077–1086

    Article  PubMed  CAS  Google Scholar 

  29. Molinari F, Kaminska A, Fiermonte G et al (2009) Mutations in the mitochondrial glutamate carrier SLC25A22 in neonatal epileptic encephalopathy with suppression bursts. Clin Genet 76:188–194

    Article  PubMed  CAS  Google Scholar 

  30. Molinari F, Raas-Rothschild A, Rio M et al (2005) Impaired mitochondrial glutamate transport in autosomal recessive neonatal myoclonic epilepsy. Am J Hum Genet 76:334–339

    Article  PubMed  CAS  Google Scholar 

  31. Mullen SA, Suls A, De Jonghe P et al (2010) Absence epilepsies with widely variable onset are a key feature of familial GLUT1 deficiency. Neurology 75:432–440

    Article  PubMed  CAS  Google Scholar 

  32. Ogiwara I, Ito K, Sawaishi Y et al (2009) De novo mutations of voltage-gated sodium channel alphaII gene SCN2A in intractable epilepsies. Neurology 73:1046–1053

    Article  PubMed  CAS  Google Scholar 

  33. Ohtahara S, Yamatogi Y (2003) Epileptic encephalopathies in early infancy with suppression-burst. J Clin Neurophysiol 20:398–407

    Article  PubMed  Google Scholar 

  34. Plecko B, Stockler S (2009) Vitamin B6 dependent seizures. Can J Neurol Sci 36(Suppl 2):S73–77

    PubMed  Google Scholar 

  35. Saitsu H, Kato M, Mizuguchi T et al (2008) De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat Genet 40:782–788

    Article  PubMed  CAS  Google Scholar 

  36. Saitsu H, Tohyama J, Kumada T et al (2008) Dominant-negative mutations in alpha-II spectrin cause West syndrome with severe cerebral hypomyelination, spastic quadriplegia, and developmental delay. Am J Hum Genet 86:881–891

    Article  Google Scholar 

  37. Scheffer IE, Turner SJ, Dibbens LM et al (2008) Epilepsy and mental retardation limited to females: an under-recognized disorder. Brain 131:918–927

    Article  PubMed  Google Scholar 

  38. Seidner G, Alvarez MG, Yeh JI et al (1998) GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose carrier. Nat Genet 18:188–191

    Article  PubMed  CAS  Google Scholar 

  39. Shen J, Gilmore EC, Marshall CA et al (2010) Mutations in PNKP cause microcephaly, seizures and defects in DNA repair. Nat Genet 42:245–249

    Article  PubMed  CAS  Google Scholar 

  40. Shoubridge C, Fullston T, Gecz J (2010) ARX spectrum disorders: making inroads into the molecular pathology. Hum Mutat 31:889–900

    Article  PubMed  CAS  Google Scholar 

  41. Suls A, Dedeken P, Goffin K et al (2008) Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain 131:1831–1844

    Article  PubMed  Google Scholar 

  42. Suls A, Mullen SA, Weber YG et al (2009) Early-onset absence epilepsy caused by mutations in the glucose transporter GLUT1. Ann Neurol 66:415–419

    Article  PubMed  CAS  Google Scholar 

  43. Weber YG, Storch A, Wuttke TV et al (2008) GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest 118:2157–2168

    PubMed  CAS  Google Scholar 

  44. Williamson SL, Christodoulou J (2006) Rett syndrome: new clinical and molecular insights. Eur J Hum Genet 14:896–903

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Die Autoren geben an, dass keine Interessenkonflikte bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. von Spiczak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Spiczak, S., Caliebe, A., Muhle, H. et al. Genetische Ursachen epileptischer Enzephalopathien. Z. Epileptol. 24, 108–113 (2011). https://doi.org/10.1007/s10309-011-0169-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-011-0169-7

Schlüsselwörter

Keywords

Navigation