Skip to main content
Log in

Control of dispersion in photonic crystal fibers

  • Published:
Journal of Optical and Fiber Communications Reports

Abstract

Photonic crystal fibers (PCFs) exploit the large index difference between air and glass to achieve modal properties unattainable by conventional fiber techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • T.A. Birks, D.Mogilevtsev, J.C. Knight and P.St.J. Russell, Dispersion compensation using single-material fibers, IEEE Photon. Technol. Lett., 11, 674 (1999).

    Article  ADS  Google Scholar 

  • J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth, and P.St.J. Russell, Anomalous dispersion in photonic crystal fiber, IEEE Phot. Technol. Lett., 12, 807 (2000).

    Article  ADS  Google Scholar 

  • J.K. Ranka, R.S. Windeler, and A.J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm, Opt. Lett., 25, 25 (2000).

    ADS  Google Scholar 

  • S. Coen, A.H.L. Chau, R. Leonhardt, J.D. Harvey, J.C. Knight, W.J. Wadsworth, and P.St.J. Russell, White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber, Opt. Lett., 26, 1356 (2001).

    ADS  Google Scholar 

  • J.C. Knight, T.A. Birks, P.St.J. Russell, and D.M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett., 21, 1547 (1996).

    ADS  Google Scholar 

  • T.A. Birks, J.C. Knight, and P.St.J. Russell, Endlessly single-mode photonic crystal fiber, Opt. Lett., 13, 961 (1997).

    ADS  Google Scholar 

  • F. Poli, A. Cucinotta, S. Selleri, and L. Vincetti, Characterisation of microstructured optical fibers for wideband dispersion compensation, J. Opt. Soc. Am. A, 20, 1958 (2003).

    ADS  Google Scholar 

  • F. Poli, A. Cucinotta, S. Selleri and A.H. Bouk, Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers, IEEE Photon. Technol. Lett., 16, 1065 (2004).

    ADS  Google Scholar 

  • L.P. Sheng, W.P. Huang, G.X. Chen, and S.S. Jian, Design and optimization of photonic crystal fibers for broad-band dispersion compensation, IEEE Photon. Technol. Lett., 15, 540 (2003).

    ADS  Google Scholar 

  • F. Gerome, J.-L. Auguste and J.-M. Blondy, Design of dispersion-compensating fibers based on dual-concentric-core photonic crystal fiber, Opt. Lett., 29, 2725 (2004).

    ADS  Google Scholar 

  • Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, Dual-core photonic crystal fiber for dispersion compensation, IEEE Photon. Technol. Lett., 16, 1516 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  • B. Zsigri, J. Laegsgaard, and A. Bjarklev, A novel photonic crystal fiber design for dispersion compensation, J. Opt. A: Pure Appl. Opt., 6, 717 (2004).

    Article  ADS  Google Scholar 

  • A.J. Antos and D.K. Smith, Design and characterization of dispersion compensating fiber based on LP01 mode, IEEE J. Lightwave Technol., 12, 1739 (1994).

    Article  ADS  Google Scholar 

  • L. Gruner-Nielsen, S.N. Knudsen, T. Veng, B. Edvold, and C.C. Larsen, Design and Manufacture of Dispersion Compensating Fiber for Simultaneous Compensation of Dispersion and Dispersion Slope, Tech. Dig. OFC'99, Paper WM13, p. 232, 1999.

  • L. Gruner-Nielsen, S.N. Knudsen, P. Kristensen, T. Veng, B. Edvold, and T. Magnussen, Dispersion Compensating Fibers and Perspectives for Future Developments, Proc. Europ. Conf. Opt. Comm. ECOC'2000, Vol. 1, p. 91, 2000.

  • A. Birks, D.Mogilevtsev, J.C. Knight, P.St.J. Russell, J. Broeng, P.J. Roberts, J.A. West, D.C. Allan, and J.C. Fajardo, The analogy between photonic crystal fibers and step index fibers, in Optical Fiber Communication Conference, OSA Technical Digest, Optical Soc. of America, Wash. DC, p. 114, 1999.

  • J.C. Knight, T.A. Birks, P.St.J. Russell and J.P. deSandro, Properties of photonic crystal fiber and the effective index model, J. Opt. Soc. Am. A, 15, 748 (1998).

    ADS  Google Scholar 

  • J.M. Pottage, D.M. Bird, T.D. Hedley, T.A. Birks, J.C. Knight, P.St.J. Russell, and P.J. Roberts, Robust photonic band gaps for hollow core guidance in PCF made from high index glass, Opt. Express, 1, 285 (2003).

    Google Scholar 

  • S.G. Johnson and J.D. Joannopoulos, Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis, Opt. Express, 8, 173 (2001).

    Article  ADS  Google Scholar 

  • D. Mogilevtsev, T.A. Birks, and P.St.J. Russell, Localized function method for modeling defect modes in 2-D photonic crystals, J. Lightwave Technol., 17, 2078 (1999).

    Article  ADS  Google Scholar 

  • R. Ghosh, A. Kumar, J.P. Meunier, and E.. Marin, Modal Characteristics of Few-mode Silica-Based Photonic Crystal Fibers, Opt. Quant. Electron., 32, 963 (2000).

    Article  Google Scholar 

  • S. Guenneau, A. Nicolet, F. Zolla, and S. Lasquellec, Modeling of photonic crystal optical fibers with finite elements, IEEE Trans. Magn. (USA), 38, 1261 (2002).

    ADS  Google Scholar 

  • N. Guan, S. Habu, S.K. Takenaga, K. Himeno, and A. Wada, Boundary element method for analysis of holey optical fibers, J. Lightwave Technol., 21, 1787 (2003).

    ADS  Google Scholar 

  • T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, G. Renversez, C.M. de Sterke and L.C. Botten, Multipole method for microstructured optical fibers: 1. Formulation, J. Opt. Soc. Am. B, 19, 2322 (2002).

    ADS  Google Scholar 

  • L. Farr, J.C. Knight, B.J. Mangan, and P.J. Roberts, Low loss photonic crystal fiber, European Conference on Optical Communication (ECOC 2002), Copenhagen Denmark, post-deadline paper PD13, 2002.

  • P.J. Roberts, F. Couny, H. Sabert, B.J. Mangan, D.P. Williams, L. Farr, M.W. Mason, A. Tomlinson, T.A. Birks, J.C. Knight, and P.St.J. Russell, Ultimate low loss of hollow-core photonic crystal fibers, Opt. Express, 13, 236 (2005).

    ADS  Google Scholar 

  • M. Wandel, T. Veng, Q. Le, and L. Gruner-Nielsen; Dispersion compensating fiber with a high figure of merit, Proceedings of 2001 European Conference on Optical Communications, Paper PD.A.1.4, 2001.

  • C.D. Poole, J.M. Wiesenfeld, A.R. McCormick, and K.T. Nelson, Broadband dispersion compensation by using high-order spatial mode in a two-mode fiber, Opt. Lett., 17, 985 (1992).

    Article  ADS  Google Scholar 

  • C.D. Poole, J.M. Wiesenfeld, D.J. DiGiovanni, and A.M. Vengsarkar, Optical fiber-based dispersion compensation using higher order modes near cutoff, J. Lightwave Technol., 12, 1745 (1994).

    ADS  Google Scholar 

  • S. Ramachandran, B. Mikkelsen, L.C. Cowsar, M.F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W.A. Reed, P. Wisk, D. Brownlow, and R.G. Huff, L. Gruner-Nielsen, All-fiber grating-based higher order mode dispersion compensator for broad-band compensation and 1000-km transmission at 40 Gb/s, IEEE Photon. Technol. Lett., 13, 632 (2001).

    Article  ADS  Google Scholar 

  • B.J. Mangan, F. Couny, L. Farr, A. Langford, P.J. Roberts, D.P. Williams, M. Banham, M.W. Mason, D.F. Murphy, E.A.M. Brown, H. Sabert, T.A. Birks, J.C. Knight, and P.St.J. Russell, Slope-matched dispersion-compensating photonic crystal fiber, Technical Digest Conference on Lasers and Electro-Optics, CLEO'04, San Francisco, California, U.S.A., May 2004, post-deadline paper CPDD3, 2004.

  • M. Fuochi, J.R. Hayes, K Furusawa, W. Belardi, J.C. Baggett, T.M. Munro, and D.J. Richardson, Polarization mode dispersion reduction in spun large mode area silica holey fibers, Opt. Express, 12, 1972-77 (2004).

    Article  ADS  Google Scholar 

  • J.L. Gimlet and N.K. Chaung, Effects of phase to intensity noise generated by multiple reflection on Gigabit per second DFB laser transmission systems, J. Lightwave Technol., 7, 888 (1989).

    ADS  Google Scholar 

  • C.J.S. de Matos, J.R. Taylor, T.P. Hansen, K.P. Hansen and J. Broeng, All-fiber chirped pulse amplification using highly dispersive air-core photonic bandgap fiber, Opt. Express, 11, 2832 (2003).

    ADS  Google Scholar 

  • H. Lim and F.W. Wise, Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber, Opt. Express, 12, 2231 (2004).

    Article  ADS  Google Scholar 

  • W. Gobel, A. Nimmerjahn, and F. Helmchen, Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber, Opt. Lett., 29, 1285 (2004).

    ADS  Google Scholar 

  • G. Humbert, J.C. Knight, G. Bouwmans, P.St.J. Russell, D.P. Williams, P.J. Roberts and B.J. Mangan, Hollow core photonic crystal fibers for beam delivery, Opt. Express, 12, 1477 (2004).

    Article  ADS  Google Scholar 

  • B.J. Mangan, L. Farr, A. Langford, P.J. Roberts, D.P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, and H. Sabert, Low loss (1.7 dB/km) hollow core photonic bandgap fiber, OFC 2004, postdeadline paper #24, 2004.

  • Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R.T. Chen, M.Y. Chen, G. Brost, and C. Lee, Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna, IEEE Photon. Technol. Lett., 17, 187 (2005).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, P., Mangan, B., Sabert, H. et al. Control of dispersion in photonic crystal fibers. J Optic Comm Rep 2, 435–461 (2005). https://doi.org/10.1007/s10297-005-0058-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10297-005-0058-9

Keywords

Navigation