Skip to main content
Log in

PMD measurement techniques and how to avoid the pitfalls

  • Published:
Journal of Optical and Fiber Communications Reports

Abstract

Since polarization-mode dispersion (PMD) can often be so confusing, it is easy to see how its measurement can be complicated as well. Many different techniques for PMD measurement are available, and often many user-selectable parameters are associated with each measurement. Provided here is a description of the various measurement techniques available along with a discussion of the “best practices” for PMD measurement using these described techniques. Section 1 gives some definitions and lists the parameters that must be measured to fully characterize PMD and introduces the statistical uncertainty inherent in polarization-mode coupled devices. Section 2 describes the various measurement techniques, classifying them as either frequency-domain or time-domain techniques. Section 3 lists several useful practices to reduce measurement errors when measuring PMD. Section 4 discusses the concept of spectral efficiency as a useful figure of merit for describing measurement uncertainty normalized to spectral bandwidth. Finally, Section 5 describes the tradeoffs associated with wavelength step size (for frequency-domain techniques) and provides some “rules-of-thumb” for choosing appropriate wavelength steps in these measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Paul A. Williams (1999) ArticleTitleMode-coupled artifact standard for polarization-mode dispersion: Design, assembly, and implementation Appl. Opt. 38 6498–6507 Occurrence Handle10.1364/AO.38.006498 Occurrence Handle1999ApOpt..38.6498W

    Article  ADS  Google Scholar 

  2. N. Gisin B. Gisin J.P. Weid ParticleVon der R. Passy (1996) ArticleTitleHow accurately can one measure a statistical quantity like polarization-mode dispersion? IEEE Photon. Technol. Lett. 8 1671–1673 Occurrence Handle1996IPTL....8.1671G

    ADS  Google Scholar 

  3. Dennis Derickson, Fiber Optic Test and Measurement (Prentice Hall, New Jersey, 1998).

  4. C.D. Poole C.R. Giles (1987) ArticleTitlePolarization-dependent pulse compression and broadening due to polarization dispersion in dispersion-shifted fiber Opt. Lett. 13 155–157 Occurrence Handle1988OptL...13..155P

    ADS  Google Scholar 

  5. Yoshinori Namihira and Jun Maeda, “Polarization mode dispersion measurements in optical fibers,” Technical Digest - Symposium on Optical Fiber Measurements, Boulder, 145–150 (1992).

  6. B. Bakhshi J. Hansryd P.A. Andrekson J. Brentel E. Kolltveit B.K. Olsson M. Karlsson (1999) ArticleTitleMeasurement of the Differential Group Delay in Installed Optical Fibers Using Polarization Multiplexed Solitons IEEE Phot. Tech. Lett. 11 593–595 Occurrence Handle1999IPTL...11..593B

    ADS  Google Scholar 

  7. Joseph W. Goodman, Statistical Optics (Wiley, New York, 1985), p. 168.

  8. B.L Heffner (1996) ArticleTitleInfluence of optical source characteristics on the measurement of polarization-mode dispersion of highly mode-coupled fibers Opt. Lett. 21 113–115 Occurrence Handle1996OptL...21..113H Occurrence Handle10.1364/OL.21.000113

    Article  ADS  Google Scholar 

  9. P.A. Williams, “Accuracy issues in comparisons of time- and frequency-domain polarization mode dispersion measurements,” Technical Digest—Symposium on Optical Fiber Measurements, Boulder, 125–129 (1996).

  10. TIA/EIA FOTP-124. 1999. Polarization-mode dispersion measurement for single-mode optical fibers by interferometric method. Telecommunications Industry Association, Arlington, VA.

  11. N. Cyr (2004) ArticleTitlePolarization-Mode Dispersion Measurement: Generalization of the Interferometric Method to Any Coupling Regime J. Lightwave Technol. 22 794–805 Occurrence Handle2004JLwT...22..794C

    ADS  Google Scholar 

  12. Ph. Oberson, K. Julliard, N. Gisin, R. Passy, and JP Von der Weid, “Interferometric Polarization Mode Dispersion Measurements with Femtoseconds Sensitivity,” Technical Digest—Symposium on Optical Fiber Measurements, Boulder, 143–146 (1996).

  13. N. Cyr, R. Roberge, J. Bradley, G. Amice, F. Audet, and G.W. Schinn, “Interferometric PMD Measurement of a Transatlantic 5512-km Fiber Link Including 119 EDFAs,” Optical Fiber Communications Conference, Session MF, (2004).

  14. N. Cyr, Michel Leclerc and Bernard Ruchet, “PMD measurements in multipath components: The single waveplate example,” Proceedings of Photonics North, Quebec (2002).

  15. P.A. Williams and J.D. Kofler, “Measurement and mitigation of multiple reflection effects on the Differential Group Delay Spectrum of optical components,” Technical Digest—Symposium on Optical Fiber Measurement, Boulder, 173–176 (2002).

  16. C.D. Poole N.S. Bergano R.E. Wagner H.J. Schulte (1989) ArticleTitlePolarization dispersion and principal states in a 147 km undersea lightwave cable J. Lightwave Technol. LT-7 1185–1190

    Google Scholar 

  17. B.L. Heffner (1992) ArticleTitleAutomated Measurement of Polarization Mode Dispersion Using Jones Matrix Eigenanalysis IEEE Photon. Technol. Lett. 4 1066–1069 Occurrence Handle1992IPTL....4.1066H

    ADS  Google Scholar 

  18. R.M. Jopson (1999) ArticleTitleMeasurement of Second-Order Polarization-Mode Dispersion Vectors in Optical Fibers IEEE Photon. Technol. Lett. 11 1153–1155 Occurrence Handle1999IPTL...11.1153J

    ADS  Google Scholar 

  19. N. Cyr, A. Girard, and G.W. Schinn, “Stokes Parameter Analysis Method, the Consolidated Test Method for PMD Measurements,” Proceedings National Fiber Optics Engineers Conference, Chicago, 1999.

  20. TIA/EIA FOTP-122. 1999. Polarization-Mode Dispersion Measurement for Single-Mode Optical Fibers by Stokes Parameter Evaluation. Telecommunications Industry Association, Arlington, VA.

  21. R.C. Jones (1946) ArticleTitleA New Calculus for the Treatment of Optical Systems: VI. Experimental Determination of the Matrix J. Opt. Soc. Am. 37 110–112 Occurrence Handle1947JOSA...37..110J

    ADS  Google Scholar 

  22. J.K. Kofler and P.A. Williams, National Institute of Standards and Technology, unpublished.

  23. Mary L. Boas, Mathematical Methods in the Physical Sciences (Wiley, New York, 1983), p. 454.

  24. Craig D. Poole (1994) ArticleTitlePolarization-Mode Dispersion Measurements Based on Transmission Spectra Through a Polarizer J. Lightwave Technol. 12 917–929 Occurrence Handle1994JLwT...12..917P

    ADS  Google Scholar 

  25. P.A. Williams C.M. Wang (1998) ArticleTitleCorrections to Fixed Analyzer Measurements of Polarization Mode Dispersion J. Lightwave Technol. 16 534–541 Occurrence Handle1998JLwT...16..534W

    ADS  Google Scholar 

  26. B.L. Heffner (1998) ArticleTitleSingle-mode propagation of mutual temporal coherence: equivalence of time and frequency measurement of polarization-mode dispersion Opt. Lett. 19 1104–1106 Occurrence Handle1994OptL...19.1104H

    ADS  Google Scholar 

  27. P.A. Williams, A.J. Barlow, C. Mackechnie, and J.B. Schlager, “Narrowband measurements of polarization-mode dispersion using the modulation phase shift technique,” Technical Digest—Symposium on Optical Fiber Measurements, Boulder, 23–26 (1998).

  28. P.A. Williams (1999) ArticleTitleModulation phase-shift measurement of PMD using only four launched polarization states: a new algorithm Electron. Lett. 35 1578–1579

    Google Scholar 

  29. L.E. Nelson R.M. Jopson H. Kogelnik J.P. Gordon (2000) ArticleTitleMeasurement of polarization mode dispersion vectors using the polarization-dependent signal delay method Opt. Express 6 158–167 Occurrence Handle2000OExpr...6..158N Occurrence Handle10.1364/OE.6.000158

    Article  ADS  Google Scholar 

  30. P.A. Williams J.D. Kofler (2004) ArticleTitleNarrowband Measurement of Differential Group Delay by a Six-State RF Phase-Shift Technique: 40 fs Single-Measurement Uncertainty J. Lightwave Technol. 22 448–456 Occurrence Handle2004JLwT...22..448W

    ADS  Google Scholar 

  31. G.D. Wiggeren ParticleVan A.R. Motamedi D.M. Baney (2003) ArticleTitleSingle-Scan Interferometric Component Analyzer IEEE Photon. Technol. Lett. 15 263–265 Occurrence Handle2003IPTL...15..263V

    ADS  Google Scholar 

  32. G.D. Wiggeren ParticleVan D.M. Baney (2003) ArticleTitleSwept-Wavelength Interferometric Analysis of Multiport Components IEEE Phtoton. Technol. Lett. 15 1267–1269 Occurrence Handle2003IPTL...15.1267V

    ADS  Google Scholar 

  33. L.B. Jeunhomme, Single-Mode Fiber Optics: Principles and Applications (Marcel Dekker, New York, 1983), p. 66.

  34. A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Accuracy Enhanced PMD Measurements with Wavelength Scanning Technique,” Technical Digest— Optical Fiber Measurement Conference, Nantes 45-48, (1999).

  35. R. Jopson L. Nelson H. Kogelnik (1999) ArticleTitleMeasurement of second-order PMD vectors in optical fibers IEEE Photon. Technol. Lett. 11 1153–1155 Occurrence Handle1999IPTL...11.1153J

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, P. PMD measurement techniques and how to avoid the pitfalls. J Optic Comm Rep 1, 84–105 (2004). https://doi.org/10.1007/s10297-004-0010-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10297-004-0010-4

Keywords

Navigation