Skip to main content
Log in

Elimination of glycerol and replacement with alternative products in ethanol fermentation by Saccharomyces cerevisiae

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Glycerol is a major by-product of ethanol fermentation by Saccharomyces cerevisiae and typically 2–3% of the sugar fermented is converted to glycerol. Replacing the NAD+-regenerating glycerol pathway in S. cerevisiae with alternative NADH reoxidation pathways may be useful to produce metabolites of biotechnological relevance. Under fermentative conditions yeast reoxidizes excess NADH through glycerol production which involves NADH-dependent glycerol-3-phosphate dehydrogenases (Gpd1p and Gpd2p). Deletion of these two genes limits fermentative activity under anaerobic conditions due to accumulation of NADH. We investigated the possibility of converting this excess NADH to NAD+ by transforming a double mutant (gpd1gpd2∆) with alternative oxidoreductase genes that might restore the redox balance and produce either sorbitol or propane-1,2-diol. All of the modifications improved fermentative ability and/or growth of the double mutant strain in a self-generated anaerobic high sugar medium. However, these strain properties were not restored to the level of the parental wild-type strain. The results indicate an apparent partial NAD+ regeneration ability and formation of significant amounts of the commodity chemicals like sorbitol or propane-1,2-diol. The ethanol yields were maintained between 46 and 48% of the sugar mixture. Other factors apart from the maintenance of the redox balance appeared to influence the growth and production of the alternative products by the genetically manipulated strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akinterinwa O, Khankal R, Cirino PC (2008) Metabolic engineering for bioproduction of sugar alcohols. Curr Opin Biotechnol 19:461–467

    Article  PubMed  CAS  Google Scholar 

  2. Albertyn J, Hohmann S, Thevelein JM, Prior BA (1994) GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 14:4135–4144

    PubMed  CAS  Google Scholar 

  3. Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L (1997) The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 16:2179–2187

    Article  PubMed  CAS  Google Scholar 

  4. Bakker BM, Overkamp KM, van Maris AJ, Kötter P, Luttik MA, van Dijken JP, Pronk JT (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25:15–37

    Article  PubMed  CAS  Google Scholar 

  5. Bennett GN, San KY (2001) Microbial formation, biotechnological production and applications of 1,2-propanediol. Appl Microbiol Biotechnol 55:1–9

    Article  PubMed  CAS  Google Scholar 

  6. Berben G, Dumont J, Gilliquet V, Bolle PA, Hilger F (1991) The YDp plasmids: a uniform set of vectors bearing versatile gene disruption cassettes for Saccharomyces cerevisiae. Yeast 7:475–477

    Article  PubMed  CAS  Google Scholar 

  7. Bisson LF, Fraenkel DG (1983) Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 80:1730–1734

    Article  PubMed  CAS  Google Scholar 

  8. Bjorkqvist S, Ansell R, Adler L, Liden G (1997) Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Appl Environ Microbiol 63:128–132

    PubMed  CAS  Google Scholar 

  9. Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132

    Article  PubMed  CAS  Google Scholar 

  10. Clifton D, Walsh RB, Fraenkel DG (1993) Functional studies of yeast glucokinase. J Bacteriol 175:3289–3294

    PubMed  CAS  Google Scholar 

  11. da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 27:30–39

    Article  PubMed  Google Scholar 

  12. de Smidt O, du Preez JC, Albertyn J (2008) The alcohol dehydrogenases of Saccharomyces cerevisiae: a comprehensive review. FEMS Yeast Res 8:967–978

    Article  PubMed  Google Scholar 

  13. Gancedo C, Gancedo JM, Sols A (1968) Glycerol metabolism in yeasts. Eur J Biochem 5:165–172

    Article  PubMed  CAS  Google Scholar 

  14. Gellissen G, Hollenberg CP (1997) Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis—a review. Gene 190:87–97

    Article  PubMed  CAS  Google Scholar 

  15. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34

    Article  PubMed  CAS  Google Scholar 

  16. Gordon JH, Dubos R (1970) The anaerobic bacterial flora of the mouse cecum. J Exp Med 132:251–260

    Article  PubMed  CAS  Google Scholar 

  17. Gururajan VT, Gorwa-Grauslund MF, Hahn-Hagerdal BH (2007) A constitutive catabolite repression mutant of a recombinant Saccharomyces cerevisiae strain improves xylose consumption during fermentation. Ann Microbiol 57:85–92

    Article  Google Scholar 

  18. Harju S, Fedosyuk H, Peterson KR (2004) Rapid isolation of yeast genomic DNA: Bust n’ Grab. BMC Biotechnol 4:8–12

    Article  PubMed  Google Scholar 

  19. Hirai M (1981) Purification and characteristics of sorbitol-6-phosphate dehydrogenase from loquat leaves. Plant Physiol 67:221–224

    Article  PubMed  CAS  Google Scholar 

  20. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  PubMed  CAS  Google Scholar 

  21. Jung JY, Choi ES, Oh MK (2008) Enhanced production of 1,2-propanediol by tpi1 deletion in Saccharomyces cerevisiae. J Microbiol Biotechnol 18:1797–1802

    PubMed  CAS  Google Scholar 

  22. Kuhn A, van Zyl C, van Tonder A, Prior BA (1995) Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae. Appl Environ Microbiol 61:1580–1585

    PubMed  CAS  Google Scholar 

  23. Ladero V, Ramos A, Wiersma A, Goffin P, Schanck A, Kleerebezem M, Hugenholtz J, Smid EJ, Hols P (2007) High-level production of the low calorie sugar sorbitol by Lactobacillus plantarum through metabolic engineering. Appl Environ Microbiol 73:1864–1872

    Article  PubMed  CAS  Google Scholar 

  24. Louw L, Roux K, Tredoux A, Tomic O, Naes T, Nieuwoudt HH, van Rensburg P (2009) Characterization of selected South African young cultivar wines using FTMIR spectroscopy, gas chromatography, and multivariate data analysis. J Agric Food Chem 57:2623–2632

    Article  PubMed  CAS  Google Scholar 

  25. Lunzer R, Mamnun Y, Haltrich D, Kulbe KD, Nidetzky B, Lunzer R (1998) Structural and functional properties of a yeast xylitol dehydrogenase, a Zn2+-containing metalloenzyme similar to medium-chain sorbitol dehydrogenases. Biochem J 336:91–99

    PubMed  CAS  Google Scholar 

  26. Luyten K, Albertyn J, Skibbe WF, Prior BA, Ramos J, Thevelein JM, Hohmann S (1995) Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and it is inactive under osmotic stress. EMBO J 14:1360–1371

    PubMed  CAS  Google Scholar 

  27. Malherbe DF (2010) Characterization and evaluation of glucose oxidase activity in recombinant Saccharomyces cerevisiae strains. PhD Thesis, Stellenbosch University

  28. Martins AM, Cordeiro CA, Ponces Freire AM, Martins AM (2001) In situ analysis of methylglyoxal metabolism in Saccharomyces cerevisiae. FEBS Lett 499:41–44

    Article  PubMed  CAS  Google Scholar 

  29. Mulligan KJ (1996) A procedure to determine diethylene glycol (2,2′-oxybisethanol) and ethylene glycol (1,2-ethanediol) in glycerin and selected products. Labo Inform Bull 12:1–7

    Google Scholar 

  30. Nissen TL, Hamann CW, Kielland-Brandt MC, Nielsen J, Villadsen J (2000) Anaerobic and aerobic batch cultivations of Saccaharomyces cerevisiae mutants impaired in glycerol synthesis. Yeast 16:463–474

    Article  PubMed  CAS  Google Scholar 

  31. Novotny MJ, Reizer J, Esch F, Saier MH (1984) Purification and properties of D-mannitol-1-phosphate dehydrogenase and D-glucitol-6-phosphate dehydrogenase from Escherichia coli. J Bacteriol 159:986–990

    PubMed  CAS  Google Scholar 

  32. Pahlman AK, Granath K, Ansell R, Hohmann S, Adler L (2001) The yeast glycerol 3-phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. J Biol Chem 276:3555–3563

    Article  PubMed  CAS  Google Scholar 

  33. Parent SA, Fenimore CM, Bostian KA (1985) Vector systems for the expression, analysis and cloning of DNA sequences in S. cerevisiae. Yeast 1:83–138

    Article  PubMed  CAS  Google Scholar 

  34. Prior BA, Hohmann S (1997) Glycerol production and osmoregulation. In: Zimmermann FK, Entian KD (eds) Yeast sugar metabolism. Lancaster, USA, pp 313–337

    Google Scholar 

  35. Saadat D, Harrison DH (1998) Identification of catalytic bases in the active site of Escherichia coli methylglyoxal synthase: cloning, expression, and functional characterization of conserved aspartic acid residues. Biochem 37:10074–10086

    Article  CAS  Google Scholar 

  36. Sarthy AV, Schopp C, Idler KB (1994) Cloning and sequence determination of the gene encoding sorbitol dehydrogenase from Saccharomyces cerevisiae. Gene 140:121–126

    Article  PubMed  CAS  Google Scholar 

  37. Shen B, Hohmann S, Jensen RG, Bohnert HJ (1999) Roles of sugar alcohols in osmotic stress adaption. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol 123:45–52

    Article  Google Scholar 

  38. Tao R, Uratsu SL, Dandekar AM (1995) Sorbitol synthesis in transgenic tobacco with apple cDNA encoding NADP+-dependent sorbitol-6-phosphate dehydrogenase. Plant Cell Physiol 36:525–532

    PubMed  CAS  Google Scholar 

  39. Truniger V, Boos W (1994) Mapping and cloning of gldA, the structural gene of the Escherichia coli glycerol dehydrogenase. J Bacteriol 176:1796–1800

    PubMed  CAS  Google Scholar 

  40. van Dijken JP, Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Rev 32:199–224

    Google Scholar 

  41. van Eck JH, Prior BA, Brandt EV (1993) The water relations of growth and polyhydroxy alcohol production by ascomycetous yeasts. J Gen Microbiol 139:1047–1054

    Google Scholar 

  42. Verduyn C, Van Kleef R, Frank J, Schreuder H, Van Dijken JP, Scheffers WA (1985) Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochem J 226:669–677

    PubMed  CAS  Google Scholar 

  43. Volschenk H, Viljoen M, Grobler J, Petzold B, Bauer F, Subden RE, Young RA, Lonvaud A, Denayrolles M, van Vuuren HJ (1997) Engineering pathways for malate degradation in Saccharomyces cerevisiae. Nat Biotechnol 15:253–257

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation (NRF) of South Africa and by Winetech, the research funding body of the South African wine industry. We thank D. Malherbe and V. T. Gururajan for kindly providing the pDMPM and pSTAH vectors respectively for cloning purposes. The technical assistance of A. Tredoux and Marieke Stander in analysis is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian F. Bauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, V.K., Divol, B., Prior, B.A. et al. Elimination of glycerol and replacement with alternative products in ethanol fermentation by Saccharomyces cerevisiae . J Ind Microbiol Biotechnol 38, 1427–1435 (2011). https://doi.org/10.1007/s10295-010-0928-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0928-x

Keywords

Navigation