Skip to main content

Advertisement

Log in

Anaerobic digestion of secondary residuals from an anaerobic bioreactor at a brewery to enhance bioenergy generation

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Many beer breweries use high-rate anaerobic digestion (AD) systems to treat their soluble high-strength wastewater. Biogas from these AD systems is used to offset nonrenewable energy utilization in the brewery. With increasing nonrenewable energy costs, interest has mounted to also digest secondary residuals from the high-rate digester effluent, which consists of yeast cells, bacteria, methanogens, and small (hemi)cellulosic particles. Mesophilic (37 °C) and thermophilic (55 °C) lab-scale, low-rate continuously-stirred anaerobic digestion (CSAD) bioreactors were operated for 258 days by feeding secondary residuals at a volatile solids (VS) concentration of ∼40 g l−1. At a hydraulic retention time (HRT) of 15 days and a VS loading rate of 2.7 g VS l−1 day−1, the mesophilic bioreactor showed an average specific volumetric biogas production rate of 0.88 l CH4 l−1 day−1 and an effluent VS concentration of 22.2 g VS l−1 (43.0% VS removal efficiency) while the thermophilic bioreactor displayed similar performances. The overall methane yield for both systems was 0.21 l CH4 g−1 VS fed and 0.47–0.48 l CH4 g−1 VS removed. A primary limitation of thermophilic digestion of this protein-rich waste is the inhibition of methanogens due to higher nondissociated (free) ammonia (NH3) concentrations under similar total ammonium (NH4 +) concentrations at equilibrium. Since thermophilic AD did not result in advantageous methane production rates or yields, mesophilic AD was, therefore, superior in treating secondary residuals from high-rate AD effluent. An additional digester to convert secondary residuals to methane may increase the total biogas generation at the brewery by 8% compared to just conventional high-rate digestion of brewery wastewater alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahring BK, Sandberg M, Angelidaki I (1995) Volatile fatty-acids as indicators of process imbalance in anaerobic digesters. Appl Microbiol Biotechnol 43:559–565

    Article  CAS  Google Scholar 

  2. Angelidaki I, Ahring BK (1993) Thermophilic anaerobic digestion of livestock waste: the effect of ammonia. Appl Microbiol Biotechnol 38:560–564

    Article  CAS  Google Scholar 

  3. Angelidaki I, Ahring BK (1994) Anaerobic thermophilic digestion of manure at different ammonia loads––effect of temperature. Water Res 28:727–731

    Article  CAS  Google Scholar 

  4. Angenent LT, Sung S, Raskin L (2002) Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste. Water Res 36:4648–4654

    Article  CAS  PubMed  Google Scholar 

  5. Calli B, Mertoglu B, Inanc B, Yenigun O (2005) Community changes during start-up in methanogenic bioreactors exposed to increasing levels of ammonia. Environ Technol 26:85–91

    Article  CAS  PubMed  Google Scholar 

  6. Clesceri LS, Greenberg AE, Eaton AD (1998) Standard methods for the examination of water and wastewater. APHA, AWWA, WEF, Washington

    Google Scholar 

  7. De Baere LA, Devocht M, Van Assche P, Verstraete W (1984) Influence of high NACl and NH4Cl salt levels on methanogenic associations. Water Res 18:543–548

    Article  Google Scholar 

  8. de Zeeuw WJ, Lettinga G (1980) Use of anaerobic digestion for wastewater treatment. Antonie Van Leeuwenhoek 46:110–112

    Article  PubMed  Google Scholar 

  9. El-Hadj TB, Dosta J, Mata-Alvarez J (2007) Start-up and HRT influence in thermophilic and mesophilic anaerobic digesters seeded with waste activated sludge. Chem Biochem Eng Q 21:145–150

    CAS  Google Scholar 

  10. Fernandez N, Forster CF (1993) A study of the operation of mesophilic and thermophilic anaerobic filters treating a synthetic coffee waste. Bioresour Technol 45:223–227

    Article  CAS  Google Scholar 

  11. Fogler HS (1999) Elements of chemical reaction engineering. Prentice Hall Inc, Upper Saddle River, NJ

    Google Scholar 

  12. Foresti E, Zaiat M, Vallero M (2006) Anaerobic processes as the core technology for sustainable domestic wastewater treatment: consolidated applications, new trends, perpectives, and challenges. Environ Sci Biotechnol 5:3–19

    Article  CAS  Google Scholar 

  13. Gujer W, Zehnder AJB (1983) Conversion processes in anaerobic digestion. Water Sci Technol 15:127–167

    CAS  Google Scholar 

  14. Harris WL, Dague RR (1993) Comparative performance of anaerobic filters at mesophilic and thermophilic temperatures. Water Environ Res 65:764–771

    Article  CAS  Google Scholar 

  15. Hoffmann R, Garcia ML, Veskivar M, Karim K, Al-Dahhan MH, Angenent LT (2007) Effect of shear on performance and microbial ecology of completely-stirred anaerobic digesters treating animal manure. Biotechnol Bioeng, vol. 19 (Epub ahead of print)

  16. Ince BK, Ince O, Anderson GK, Arayici S (2001) Assessment of biogas use as an energy source from anaerobic digestion of brewery wastewater. Water Air Soil Pollut 126:239–251

    Article  CAS  Google Scholar 

  17. Jayantha KS, Ramanujam TK (1995) Start-up criteria for a upflow anaerobic sludge blanket (UASB) reactor. Bioprocess Eng 13:307–310

    Article  Google Scholar 

  18. Kleerebezem R, Macarie H (2003) Treating industrial wastewater: anaerobic digestion comes of age. Chem Eng 110:56–64

    Google Scholar 

  19. Koster IW, Koomen E (1988) Ammonia inhibition of the maximum growth rate (μm) of hydrogenotrophic methanogens at various pH-levels and temperatures. Appl Microbiol Biotechnol 28:500–505

    Article  CAS  Google Scholar 

  20. Lehtomaki A, Huttunen S, Rintala JA (2007) Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: effect of crop to manure ratio. Resour Conserv Recycl 51:591–609

    Article  Google Scholar 

  21. Lettinga G (1995) Anaerobic digestion and wastewater treatment systems. Antonie Van Leeuwenhoek 67:3–28

    Article  CAS  PubMed  Google Scholar 

  22. Mackie RI, Bryant MP (1995) Anaerobic-digestion of cattle waste at mesophilic and thermophilic temperatures. Appl Microbiol Biotechnol 43:346–350

    Article  CAS  Google Scholar 

  23. Massart N, Bates R, Corning B, Neun G (2006) When it bubbles over. Water Environ Technol 18:50–55

    CAS  Google Scholar 

  24. Muller CD, Abu-Orf M, Novak JT (2007) Application of mechanical shear in an internal-recycle for the enhancement of mesophilic anaerobic digestion. Water Environ Res 79:297–304

    Article  CAS  PubMed  Google Scholar 

  25. Rodriguez-Martinez J, Martinez-Amador SY, Garza-Garcia Y (2005) Comparative anaerobic treatment of wastewater from pharmaceutical, brewery, paper and amino acid producing industries. J Ind Microbiol Biotechnol 32:691–696

    Article  CAS  PubMed  Google Scholar 

  26. Rudd T, Hicks SJ, Lester JN (1985) Comparison of the treatment of a synthetic meat waste by mesophilic and thermophilic anaerobic fluidized bed reactors. Environ Technol Lett 6:209–224

    Article  CAS  Google Scholar 

  27. Schwarzenbach RP, Gschwend PM, Imboden DM (2002) Environmental organic chemistry. Wiley, Hoboken

    Book  Google Scholar 

  28. Soto M, Mendez R, Lema JM (1992) Characterization and comparison of biomass from mesophilic and thermophilic fixed-bed anaerobic digesters. Water Sci Technol 25:203–212

    CAS  Google Scholar 

  29. Stafford DA, Hawkes DL, Horton R (1980) Methane production from waste organic matter. CRC Press, Boca Raton

    Google Scholar 

  30. Steinhaus B, Garcia ML, Shen AQ, Angenent LT (2007) A portable anaerobic microbioreactor reveals optimum growth conditions for the methanogen Methanosaeta concilii. Appl Environ Microbiol 73:1653–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Strenstrom M (1983) Anaerobic digestion of municipal solid sludge. J Environ Eng 109:1148–1158

    Article  Google Scholar 

  32. Timur H, Özturk I (1999) Anaerobic sequencing batch reactor treatment of landfill leachate. Water Res 33:3225–3230

    Article  CAS  Google Scholar 

  33. Trnovec W, Britz TJ (1998) Influence of organic loading rate and hydraulic retention time on the efficiency of a UASB bioreactor treating a canning factory effluent. Water SA 24:1147–1152

    Google Scholar 

  34. van Lier J (1996) Limitations of thermophilic anaerobic wastewater treatment and the consequences for process design. Antonie Van Leeuwenhoek 69:1–14

    Article  PubMed  Google Scholar 

  35. van Lier JB, Grolle KC, Frijters CT, Stams AJ, Lettinga G (1993) Effects of acetate, propionate, and butyrate on the thermophilic anaerobic degradation of propionate by methanogenic sludge and defined cultures. Appl Environ Microbiol 59:1003–1011

    PubMed  PubMed Central  Google Scholar 

  36. Vandenburgh SR, Ellis TG (2002) Effect of varying solids concentration and organic loading on the performance of temperature phased anaerobic digestion process. Water Environ Res 74:142–148

    Article  CAS  PubMed  Google Scholar 

  37. Vandevoorde L, Verstraete W (1987) Anaerobic solid state fermentation of cellulosic substrates with possible application to cellulase production. Appl Microbiol Biotechnol 26:479–484

    Article  CAS  Google Scholar 

  38. Verstraete W, de Beer D, Pena M, Lettinga G, Lens P (1996) Anaerobic bioprocessing of organic wastes. World J Microbiol Biotechnol 12:221–238

    Article  CAS  PubMed  Google Scholar 

  39. Wiegant WM, De Man AWA (1986) Granulation of biomass in thermophilic anaerobic sludge reactors. Biotechnol Bioeng 28:718–727

    Article  CAS  PubMed  Google Scholar 

  40. Wiegant WM, Hennick M, Lettinga G (1986) Separation of the propionate degradation to improve the efficiency of thermophilic anaerobic treatment of acidified wastewaters. Water Res 20:517–524

    Article  CAS  Google Scholar 

  41. Yacob S, Shirai Y, Hassan MA, Wakisaka M, Subash S (2006) Start-up operation of semi-commercial closed anaerobic digester for palm oil mill effluent treatment. Proc Biochem 41:962–964

    Article  CAS  Google Scholar 

  42. Zitomer DH, Bachman TC, Vogel DS (2005) Thermophilic anaerobic digester with ultrafilter for solids stabilization. Water Sci Technol 52:525–530

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the financial support of Anheuser-Busch Inc., St. Louis, MO and thank Thea Cummings for her support in feeding the bioreactors and Jelte Lanting (Biothane Corporation, Camden, NJ) for consulting on the operating conditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Largus T. Angenent.

Additional information

JIMB-2008: BioEnergy—Special issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bocher, B.T., Agler, M.T., Garcia, M.L. et al. Anaerobic digestion of secondary residuals from an anaerobic bioreactor at a brewery to enhance bioenergy generation. J Ind Microbiol Biotechnol 35, 321–329 (2008). https://doi.org/10.1007/s10295-007-0295-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-007-0295-4

Keywords

Navigation