Skip to main content
Log in

Expression of Vitreoscilla hemoglobin in Gordonia amarae enhances biosurfactant production

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

The gene (vgb) encoding Vitreoscilla (bacterial) hemoglobin (VHb) was electroporated into Gordonia amarae, where it was stably maintained, and expressed at about 4 nmol VHb g−1 of cells. The maximum cell mass (OD600) of vgb-bearing G. amarae was greater than that of untransformed G. amarae for a variety of media and aeration conditions (2.8-fold under normal aeration and 3.4-fold under limited aeration in rich medium, and 3.5-fold under normal aeration and 3.2-fold under limited aeration in mineral salts medium). The maximum level of trehalose lipid from cultures grown in rich medium plus hexadecane was also increased for the recombinant strain, by 4.0-fold in broth and 1.8-fold in cells under normal aeration and 2.1-fold in broth and 1.4-fold in cells under limited aeration. Maximum overall biosurfactant production was also increased in the engineered strain, by 1.4-fold and 2.4-fold for limited and normal aeration, respectively. The engineered strain may be an improved source for producing purified biosurfactant or an aid to microorganisms bioremediating sparingly soluble contaminants in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arenskotter M, Broker D, Steinbuchel A (2004) Biology of the metabolically diverse genus Gordonia. Appl Environ Microbiol 70:3195–3204

    Article  PubMed  CAS  Google Scholar 

  2. Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    Article  PubMed  CAS  Google Scholar 

  3. Beveridge TJ (1990) Mechanism of gram variability in select bacteria. J Bacteriol 172:1609–1620

    PubMed  CAS  Google Scholar 

  4. Buddenhagen RE, Webster DA, Stark BC (1996) Enhancement by bacterial hemoglobin of amylase production in recombinant E. coli occurs under conditions of low O2. Biotechnol Lett 18:695–700

    Article  CAS  Google Scholar 

  5. Cha DK (1990) Process control factors influencing Nocardia populations in activated sludge. PhD Dissertation, University of California, Berkley

  6. Chung JW, Webster DA, Pagilla KR, Stark BC (2001) Chromosomal integration of the Vitreoscilla hemoglobin gene in Burkholderia and Pseudomonas for the purpose of producing stable engineered strains with enhanced bioremediating ability. J Ind Microbiol Biotechnol 27:27–33

    Article  PubMed  CAS  Google Scholar 

  7. Cooper DG, Zajic JE (1980) Surface active compounds from microorganisms. Adv Appl Microbiol 26:229–253

    Article  CAS  Google Scholar 

  8. Davis JB (1964) Cellular lipids of a Nocardia grown on propane and n-butane. Appl Microbiol 12:301–304

    PubMed  CAS  Google Scholar 

  9. De Modena JA, Gutierrez S, Velasco J, Fernandez FJ, Fachini RA, Galazzo JL, Hughes DE, Martin JF (1993) The production of cephalosporin C by Acremonium chrysogenum is improved by the intracellular expression of a bacterial hemoglobin. Biotechnology 11:926–929

    Article  PubMed  Google Scholar 

  10. Dikshit KL, Webster DA (1988) Cloning, characterization and expression of the bacterial globin gene from Vitreoscilla in E. coli. Gene 70:377–386

    Article  PubMed  CAS  Google Scholar 

  11. Farres J, Kallio PT (2002) Improved cell growth in tobacco suspension cultures expressing Vitreoscilla hemoglobin. Biotechnol Prog 18:229–233

    Article  PubMed  CAS  Google Scholar 

  12. Georgiou G, Lin S-C, Sharma MM (1992) Review of surface-active compounds from microorganisms. Biotechnology 10:60–65

    Article  PubMed  CAS  Google Scholar 

  13. Hodge JE, Hofreiter BT (1962) Determination of reducing sugars and carbohydrates. Methods Carbohydr Chem 1:389–390

    Google Scholar 

  14. Holmberg N, Lilius G, Bailey JE, Bulow L (1997) Transgenic tobacco expressing Vitreoscilla hemoglobin exhibits enhanced growth and altered metabolite production. Nat Biotechnol 15:244–247

    Article  PubMed  CAS  Google Scholar 

  15. Holmes DS, Quigley M (1981) A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 114:193–197

    Article  PubMed  CAS  Google Scholar 

  16. Kallio PT, Kim DJ, Tsai PS, Bailey JE (1994) Intracellular expression of Vitreoscilla hemoglobin alters Escherichia coli energy metabolism under oxygen-limited conditions. Eur J Biochem 219:201–208

    Article  PubMed  CAS  Google Scholar 

  17. Kang DG, Kim JYH, Cha HJ (2002) Enhanced detoxification of organophosphates using recombinant Escherichia coli with coexpression of organophosphorus hydrolase and bacterial hemoglobin. Biotechnol Lett 24:879–883

    Article  CAS  Google Scholar 

  18. Kayser KJ, Kilbane JJ (2001) New host-vector system for Thermus spp. based on the malate dehydrogenase gene. J Bacteriol 183:1792–1795

    Article  PubMed  CAS  Google Scholar 

  19. Lang S, Wagner F (1987) Structure and properties of biosurfactants. In: Kosaric N, Cairns WL (eds) Biosurfactants and biotechnology. Marcel Dekker, New York, pp 21–46

    Google Scholar 

  20. Lee SY, Stark BC, Webster DA (2004) Structure-function studies of the Vitreoscilla hemoglobin D-region. Biochem Biophys Res Commun 316:1101–1106

    Article  PubMed  CAS  Google Scholar 

  21. Lin JM, Stark BC, Webster DA (2003) Effects of Vitreoscilla hemoglobin on the 2,4-dinitrotoluene (DNT) dioxygenase activity of Burkholderia and on DNT degradation in two-phase bioreactors. J Ind Microbiol Biotechnol 30:362–368

    Article  PubMed  CAS  Google Scholar 

  22. Liu SC, Webster DA, Stark BC (1995) Cloning and expression of the Vitreoscilla hemoglobin gene in Pseudomonads: effects on cell growth. Appl Microbiol Biotechnol 44:419–424

    Article  CAS  Google Scholar 

  23. MacDonald CR, Cooper DG, Zajic JE (1981) Surface-active lipids from Nocardia erythropolis grown on hydrocarbons. Appl Environ Microbiol 41:117–123

    PubMed  CAS  Google Scholar 

  24. Magnolo SK, Leenutaphong DL, De Modena JA, Curtis JE, Bailey JE, Galazzo JL, Hughes DE (1991) Actinorhodin production by Streptomyces coelicolor and growth of Streptomyces lividans are improved by the expression of a bacterial hemoglobin. Biotechnology 9:473–476

    Article  PubMed  CAS  Google Scholar 

  25. Margaritis A, Kennedy K, Zajic JE, Gerson DF (1979) Biosurfactant production by Nocardia erythropolis. Dev Ind Microbiol 20:623–630

    Google Scholar 

  26. Mazodier P, Petter R, Thompson C (1989) Intergeneric conjugation between E. coli and Streptomyces species. J Bacteriol 171:3583–3585

    PubMed  CAS  Google Scholar 

  27. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  28. Pagilla KR, Kim H, Sood A (2002) Gordonia amarae foaming due to biosurfactant production. Water Sci Technol 46:519–524

    PubMed  CAS  Google Scholar 

  29. Parales RE, Bruce NC, Schmid A, Wackett LP (2002) Biodegradation, biotransformation, and biocatalysis (B3). Appl Environ Microbiol 68:4699–4709

    Article  PubMed  CAS  Google Scholar 

  30. Park KW, Kim KJ, Howard AJ, Stark BC, Webster DA (2002) Vitreoscilla hemoglobin binds to subunit I of cytochrome bo ubiquinol oxidases. J Biol Chem 277:33334–33337

    Article  PubMed  CAS  Google Scholar 

  31. Pendse GJ, Bailey JE (1994) Effect of Vitreoscilla hemoglobin expression on growth and specific tissue plasminogen activator productivity in recombinant Chinese hamster ovary cells. Biotechnol Bioeng 44:1367–1370

    Article  CAS  Google Scholar 

  32. Ramendeep, Hwang KW, Raje M, Kim KJ, Stark BC, Dikshit KL, Webster DA (2001) Vitreoscilla hemoglobin: intracellular localization and binding to membranes. J Biol Chem 276:24781–24789

    Article  PubMed  Google Scholar 

  33. Roos V, Andersson CIJ, Bulow L (2004) Gene expression profiling of Escherichia coli expressing double Vitreoscilla haemoglobin. J Biotechnol 114:107–120

    Article  PubMed  CAS  Google Scholar 

  34. Schafer A, Kalinowski J, Simon R, Seep-Feldhaus A-H, Puhler A (1990) High-frequency conjugal plasmid transfer from Gram-negative E. coli to various Gram-positive coryneform bacteria. J Bacteriol 172:1663–1666

    PubMed  CAS  Google Scholar 

  35. Stark BC, Webster DA, Dikshit KL (1999) Vitreoscilla hemoglobin: molecular biology, biochemistry, and practical applications. Recent Res Dev Biotech Bioeng 2:155–174

    CAS  Google Scholar 

  36. Sutton R (1992) Removal of sparingly soluble organic chemicals from aqueous solutions by biosurfactants produced by Nocardia amarae. MS Thesis, Illinois Institute of Technology, Chicago

  37. Trieu-Cuot P, Carlier C, Martin P, Courvalin P (1987) Plasmid transfer by conjugation from E. coli to Gram-positive bacteria. FEMS Microbiol Lett 48:289–294

    Article  CAS  Google Scholar 

  38. Tsai PS, Hatzimanikatis V, Bailey JE (1996) Effect of Vitreoscilla hemoglobin dosage on microaerobic Escherichia coli carbon and energy metabolism. Biotechnol Bioeng 49:139–150

    Article  CAS  Google Scholar 

  39. Urgun-Demirtas M, Pagilla KR, Stark BC, Webster DA (2003) Biodegradation of 2-chlorobenzoate by recombinant Burkholderia cepacia expressing Vitreoscilla hemoglobin under variable levels of oxygen availability. Biodegradation 14:357–365

    Article  PubMed  CAS  Google Scholar 

  40. Urgun-Demirtas M, Pagilla KR, Stark BC (2004) Enhanced kinetics of genetically engineered Burkholderia cepacia: role of vgb in the hypoxic metabolism of 2-CBA. Biotechnol Bioeng 87:110–118

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF grant number MCB-9910356. We thank Dr. John Kilbane for helpful discussions, Dr. Kevin Kayser for help with electroporation, and Dr. Sangeeta Patel for help with the Gram staining.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin C. Stark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dogan, I., Pagilla, K.R., Webster, D.A. et al. Expression of Vitreoscilla hemoglobin in Gordonia amarae enhances biosurfactant production. J IND MICROBIOL BIOTECHNOL 33, 693–700 (2006). https://doi.org/10.1007/s10295-006-0097-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-006-0097-0

Keywords

Navigation