Skip to main content
Log in

Microbial metabolomics: replacing trial-and-error by the unbiased selection and ranking of targets

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

Microbial production strains are currently improved using a combination of random and targeted approaches. In the case of a targeted approach, potential bottlenecks, feed-back inhibition, and side-routes are removed, and other processes of interest are targeted by overexpressing or knocking-out the gene(s) of interest. To date, the selection of these targets has been based at its best on expert knowledge, but to a large extent also on ‘educated guesses’ and ‘gut feeling’. Therefore, time and thus money is wasted on targets that later prove to be irrelevant or only result in a very minor improvement. Moreover, in current approaches, biological processes that are not known to be involved in the formation of a specific product are overlooked and it is impossible to rank the relative importance of the different targets postulated. Metabolomics, a technology that involves the non-targeted, holistic analysis of the changes in the complete set of metabolites in the cell in response to environmental or cellular changes, in combination with multivariate data analysis (MVDA) tools like principal component discriminant analysis and partial least squares, allow the replacement of current empirical approaches by a scientific approach towards the selection and ranking of targets. In this review, we describe the technological challenges in setting up the novel metabolomics technology and the principle of MVDA algorithms in analyzing biomolecular data sets. In addition to strain improvement, the combined metabolomics and MVDA approach can also be applied to growth medium optimization, predicting the effect of quality differences of different batches of complex media on productivity, the identification of bioactives in complex mixtures, the characterization of mutant strains, the exploration of the production potential of strains, the assignment of functions to orphan genes, the identification of metabolite-dependent regulatory interactions, and many more microbiological issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Arkin A, Shen P, Ross J (1997) A test case of correlation metric construction of a reaction pathway from measurements. Science 277:1275–1279

    Article  CAS  Google Scholar 

  2. Bailey JE (1999) Lessons from metabolic engineering for functional genomics and drug discovery. Nat Biotechnol 17:616–618

    CAS  PubMed  Google Scholar 

  3. Beck S, Schink B (1995) Acetate oxidation through a modified citric acid cycle in Propionibacterium freudenreichii. Arch Microbiol 163:182–187

    CAS  Google Scholar 

  4. Beecher CWW (2003) The human metabolome. In: Harrigan GG, Goodacre R (eds) Metabolic profiling: its role in biomarker discovery and gene function analysis. Kluwer, Boston, pp 311–319

    Google Scholar 

  5. Bhattacharya M, Fuhrman L, Ingram A, Nickerson KW, Conway T (1995) Single-run separation and detection of multiple metabolic intermediates by anion-exchange high-performance liquid chromatography and application to cell pool extracts prepared from Escherichia coli. Anal Biochem 232:98–106

    CAS  PubMed  Google Scholar 

  6. Britz-Mckibbin P, Terabe S (2002) High-sensitivity analyses of metabolites in biological samples by capillary electrophoresis using dynamic pH junction-sweeping. Jpn Chem J Forum 2:397–404

    CAS  Google Scholar 

  7. Britz-McKibbin P, Nishioka T, Terabe S (2003) Sensitive and high-throughput analysis of purine metabolites by dynamic pH Junction multiplexed capillary electrophoresis: a new tool for metabolomics studies. Anal Sci 19:99–104

    CAS  PubMed  Google Scholar 

  8. Bucholz A, Hurlebaus J, Wandrey C, Takors R (2002) Metabolomics: quantification of intracellular metabolite dynamics. Biomol Eng 19:5–15

    Article  PubMed  Google Scholar 

  9. Castrillo JI, Hayes A, Mohammed S, Gaskell SJ, Oliver SG (2003) An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry. Phytochemistry 62:929–937

    Article  CAS  PubMed  Google Scholar 

  10. Colby BN (1992) Spectral deconvolution for overlapping GC/MS components. J Am Soc Mass Spectrom 3:558–562

    Article  CAS  Google Scholar 

  11. Dauner M, Sonderegger M, Hochuli M, Szyperski T, Withrich K, Hohmann H-P, Sauer U, Bailey JE (2002) Intracellualr carbon fluxes in riboflavin-producing Bacillus subtilis during growth on two-carbon substrate mixtures. Appl Environ Microbiol 68:1760–1771

    Google Scholar 

  12. Koning W de, Dam K van (1992) A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal Biochem 204:118–123

    Article  PubMed  Google Scholar 

  13. Nijs M de, Larsen JS, Gams W, Rombouts FM, Wernars K, Thrane Ul, Notermans SHW (1997) Variations in random amplified polymorphic DNA patterns and secondary metabolite profiles within Fusarium species from cereals from various parts of the Netherlands. Food Microbiol 14:449Y–457Y

    Google Scholar 

  14. Dillon WR, Goldstein M (1984) Multivariate analysis, methods and applications. Wiley, New York

    Google Scholar 

  15. Duez P, Kumps A, Mardens Y (1996) GC-MS profiling of urinary organic acids evaluated as a quantitative method. Clin Chem 42:1609–1615

    Google Scholar 

  16. Edwards JS, Palsson BO (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci USA 97:5528–5533

    Article  CAS  PubMed  Google Scholar 

  17. Ellis LBM, Hershberger CD, Wackett LP (1999) The university of minnesota biocatalysis/biodegradation database: specialized metabolism for functional genomics. Nucleic Acids Res 27:373–376

    Article  CAS  PubMed  Google Scholar 

  18. Elmroth I, Sundin P, Valeur A, Larsson L, Odham G (1992) Evaluation of chromatographic methods for the detection of bacterial contamination in biotechnical processes. J Microbiol Methods 15:215–228

    Article  CAS  Google Scholar 

  19. Faller D, Klingmuller U, Timmer J (2003) Simulation methods for optimal experimental design in systems biology. Simulation 79:717–725

    Google Scholar 

  20. Famili I, Forster J, Nielsen J, Palsson BO (2003) Saccharomyces cerevisiae phentotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc Natl Acad Sci USA 100:13134–13139

    CAS  PubMed  Google Scholar 

  21. Fell DA (2001) Beyond genomics. Trends Genet 17:680–682

    Article  CAS  PubMed  Google Scholar 

  22. Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000a) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161

    Article  CAS  PubMed  Google Scholar 

  23. Fiehn O, Kopka J, Trethewey RN, Willmitzer L (2000b) Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal Chem 72:3573–3580

    CAS  PubMed  Google Scholar 

  24. Flutcher B, Latter GI, Monardo P, McLaughlin CS, Garrels JI (1999) A sampling of the yeast proteome. Mol Cell Biol 19:7357–7368

    PubMed  Google Scholar 

  25. Förster J, Gombert AK, Nielsen J (2002) A functional genomics approach using metabolomics and In Silico pathway analysis. Biotechnol Bioeng 79:703–712

    PubMed  Google Scholar 

  26. Fraser PD, Pinto MES, Holloway DE, Bramley PM (2000) Application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant J 24:551–558

    CAS  PubMed  Google Scholar 

  27. Geladi P, Kowalski BR (1986) Partial least squares regression: a tutorial. Anal Chim Acta 185:1–17

    CAS  Google Scholar 

  28. Glassey J, Montague G, Mohan P (2000) Issues in the development of an industrial bioprocess advisory system. Trends Biotechnol 18:136–141

    Article  CAS  PubMed  Google Scholar 

  29. Gonzalez B, Francois J, Renaud M (1997) A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 13:1347–1356

    Article  CAS  PubMed  Google Scholar 

  30. Goodacre R, Kell DB (2003) Evolutionary computation for the interpretation of metabolomic data. In: Harrigan GG, Goodacre R (eds) Metabolic profiling: its role in biomarker discovery and gene function analysis. Kluwer, Boston, pp 239–256

    Google Scholar 

  31. Goodacre R, Rischert DJ, Evans PM, Kell DB (1996) Rapid authentication of animal cell lines using pyrolysis masss spectrometry and auto-associative artificial neural networks. Cytotechnology 21:231–241

    Google Scholar 

  32. Goto S, Oluno Y, Hattori M, Nishioka T, Kanehisa M (2002) LIGAND: database of chemical compounds and reactions in biological pathways. Nucleic Acids Res 30:402–404

    CAS  PubMed  Google Scholar 

  33. Gygi SP, Rochon Y, Pranza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    CAS  PubMed  Google Scholar 

  34. Halket JM, Przyborowska A, Stein SE, Mallard WG, Down S, Chalmers RA (1999) Deconvoultion gas chromatogrphy/mass spectrometry of urinary organic acids—potential for pattern recognition and automated indentification of metabolic disorders. Rapid Commun Mass Spectrom 13:279–284

    Article  CAS  PubMed  Google Scholar 

  35. Hardy N, Fuell H (2003) Databases, data modelling and schemas. In: Harrigan GG, Goodacre R (eds) Metabolic profiling: its role in biomarker discovery and gene function analysis. Kluwer, Boston, pp 277–291

    Google Scholar 

  36. Herron NR, Donnelly JR, Sovocool GW (1996) Software-based mass spectral enhancement to remove interferences from spectra of unknowns. J Am Soc Mass Spectrom 7:598–604

    Article  CAS  Google Scholar 

  37. Hoogerbrugge R, Willig SJ, Kistemaker PG (1983) Discriminant analysis by double stage principal component analysis. Anal Chem 55:1710–1712

    Article  CAS  Google Scholar 

  38. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531

    CAS  PubMed  Google Scholar 

  39. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292:929–934

    Article  CAS  PubMed  Google Scholar 

  40. Jenkins H, Hardy N, Beckmann M, et al (2004) A proposed framework for the description of plant metabolomics experiments and their results. Nat Biotechnol 22:1601–1606

    Article  CAS  PubMed  Google Scholar 

  41. Jensen NBS, Jokumsen KV, Villadsen J (1999) Determination of the phosphorylated sugars of the Embden-Meyerhoff-Parnass pathway in Lactococcus lactis using a fast sampling technique and solid phase extraction. Biotechnol Bioeng 63:356–362

    CAS  PubMed  Google Scholar 

  42. Johansson D, Lindgren P, Berglund A (2003) A multivariate approach applied to microarray data for identification of genes with cell cycle-coupled transcription. Bioinformatics 19:467–473

    CAS  PubMed  Google Scholar 

  43. Joliffe IT (1986) Principal component analysis. Springer, Berlin Heidelberg New York

    Google Scholar 

  44. Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The Kegg databases at GenomeNet. Nucleic Acids Res 30:42–46

    CAS  PubMed  Google Scholar 

  45. Karp PD (1992) A knowledge base of the chemical compounds of intermediary metabolism. Comput Appl Biosci 8:347–357

    CAS  PubMed  Google Scholar 

  46. Karp PD, Riley M, Saier M, Paulsen IT, Collado-Vides J, Paley SM, Pellegrinie-Toole A, Bonavides C, Gama-Castro S (2002) The EcoCyc database. Nucleic Acids Res 30:56–58

    Article  CAS  PubMed  Google Scholar 

  47. Katona ZsF, Sass P, Molnar-Perl I (1999) Simultaneous determination of sugars, sugar alcohols, acids and amino acids in apricots by gas chromatography-mass spectrometry. J Chromatogr A 847:91–102

    Article  CAS  Google Scholar 

  48. Kell DB, Oliver SG (2003) Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. Bioessays 26:99–105

    Google Scholar 

  49. Khandurina J, Guttman A (2002) Bioanalysis in microfluidic devices. J Chromatogr A 943:159–183

    Article  CAS  PubMed  Google Scholar 

  50. Kohonen T (1995) Self-organizing maps. Springer, Berlin Heidelberg New York

    Google Scholar 

  51. Kristal BS, Vigneau-Callahan KE, Matson WR (1998) Simultaneous analysis of the majority of low-molecular-weight, redox-active compounds from mitochondria. Anal Biochem 263:18–25

    CAS  PubMed  Google Scholar 

  52. Kueh AJ, Marriott PJ, Wynne PM, Vine JH (2003) Application of comprehensive two-dimensional gas chromatography to drugs analysis in doping control. J Chromatogr A 1000:109–124

    CAS  PubMed  Google Scholar 

  53. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G et al (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–266

    CAS  PubMed  Google Scholar 

  54. Lange HC, Eman M, van Zuijlen G, Visser D, van Dam JC, Frank J, Teixeira de Mattos MJ, Heijnen JJ (2001) Improved rapid sampling for in vivo kinetics of intracellular metabolites in Saccharomyces cerevisiae. Biotechnol Bioeng 75:406–415

    Article  CAS  PubMed  Google Scholar 

  55. Lengeler JW (2000) Metabolic networks: a signal-oriented approach to cellular models. Biol Chem 381:911–920

    Article  CAS  PubMed  Google Scholar 

  56. Li XJ, Brazhnik Ol, Kamal A, Guo D, Lee C, Hoops S, Mendes P (2003) Databases adnd visualization for metabolomics. In: Harrigan GG, Goodacre R (eds) Metabolic profiling: its role in biomarker discovery and gene function analysis. Kluwer, Boston, pp 293–309

    Google Scholar 

  57. Linial M (2003) How incorrect annotations evolve—the case of short ORFs. Trends Biotechnol 21:298–300

    Article  CAS  PubMed  Google Scholar 

  58. Liu X, Ng C, Ferenci T (2000) Global adaptations resulting from high population densities in Escherichia coli cultures. J Bacteriol 182:4158–4164

    Article  CAS  PubMed  Google Scholar 

  59. Lowry OH, Carter J, Ward JB, Glaser L (1971) The effect of carbon and nitrogen sources on the level of metabolic intermediates in Escherichia coli. J Biol Chem 246:6511–6521

    CAS  PubMed  Google Scholar 

  60. Mano N, Goto J (2003) Biomedical and biological mass spectrometry. Anal Sci 19:3–14

    Article  CAS  PubMed  Google Scholar 

  61. Markuszewski MJ, Britz-McKibbin P, Terabe S, Matsuda K, Nishioka T (2003) Determination of pyridine and adenine nucleotide metabolites in Bacillus subtilis cell extract by sweeping borate complexation capillary electrophoresis. J Chromatogr A 989:293–301

    Article  CAS  PubMed  Google Scholar 

  62. Marriott P, Shellie R, Fergeus J, Ong R, Morrison P (2000) High resolution essential oil analysis by using comprehensive gas chromatographic methodology. Flav Fragr J 15:225–239

    Article  CAS  Google Scholar 

  63. Martens H, Naes T (1989) Multivariate calibration. Wiley, Chichester

    Google Scholar 

  64. McCloskey JA (1990) Constituents of nucleic acids: overview and strategy. Methods Enzymol 193:771–781

    CAS  PubMed  Google Scholar 

  65. Nelson MD, Dolan JW (2002) Ion suppression in LC-MS-MS: a case study. LC GC Eur 2002:73–79

    Google Scholar 

  66. Overbeek R, Larsen N, Pusch GD, D’Souza M, Slekov E, Kyrpides N, Fonstein M, Maltsev N, Selkov E (2000) WIT: integrated system for high-throughput genome sequence analysis and metabolic reconstruction. Nucleic Acids Res 28:123–125

    Article  CAS  PubMed  Google Scholar 

  67. Piper MDW, Daran-Lapujade P, Bro C, Regenberg B, Knudsen S, Nielsen J, Pronk JT (2002) Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 277:37001–37008

    Article  CAS  PubMed  Google Scholar 

  68. Raamsdonk LM, Teusink B, Broadhurst D, Zhang N, Hayes A, Walsh MC, Berden JA, Brindle KM, Kell DB, Rowland JJ, Westerhoff HV, Dam K van, Oliver SG (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19:45–50

    Article  CAS  PubMed  Google Scholar 

  69. Regnier FE, He B, Lin S, Busse J (1999) Chromatography and electrophoresis on chips: critical elements of future integrated, microfluidic analytical systems for life science. Trends Biotechnol 17:101–106

    Article  CAS  PubMed  Google Scholar 

  70. Rhodes G, Miller M, McConnel ML, Novotny M (1981) Metabolic abnormalities associated with diabetes mellitus, as investigated by gas chromatography and pattern-recognition analysis of profiles of volatile metabolites. Anal Chem 27:580–585

    CAS  Google Scholar 

  71. Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J 23:131–142

    Article  CAS  PubMed  Google Scholar 

  72. Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29

    CAS  PubMed  Google Scholar 

  73. Ruijter GJG, Visser J (1996) Determination of intermediary metabolites in Aspergillus niger. J Microbiol Methods 25:295–302

    Article  CAS  Google Scholar 

  74. Saez MJ, Lagunas R (1976) Determination of intermediary metabolites in yeast. Critical examination of the effect of sampling conditions and recommendations for obtaining true levels. Mol Cell Biochem 13:73–78

    CAS  PubMed  Google Scholar 

  75. Sanford K, Soucaille P, Whited G, Chotani G (2002) Genomics to fluxomics and physiomics—pathway engineering. Curr Opin Microbiol 5:318–322

    Article  CAS  PubMed  Google Scholar 

  76. Schwab W (2003) Metabolome diversity: too few genes, too many metabolites? Phytochemistry 62:837–849

    Article  CAS  PubMed  Google Scholar 

  77. Shatkay H, Feldman R (2003) Mining the biomedial literature in the genomic era: an overview. J Comput Biol 10:821–855

    Article  CAS  PubMed  Google Scholar 

  78. Shellie R, Marriott PJ (2002) Comprehensive two-dimensional gas chromatography with fast enantioseparation. Anal Chem 74:5426–5430

    Article  CAS  PubMed  Google Scholar 

  79. Soderstrom B, Frisvad JC (1984) Separation of closely related asymmetrc penicillia by pyrolysis gas chromatography and mycotoxin production. Mycologia 76:408–419

    Google Scholar 

  80. Soga T, Ueno Y, Naraoka H, Ohashi Y, Tomita M, Nishioka T (2002) Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 74:2233–2239

    Article  CAS  PubMed  Google Scholar 

  81. Soga T, Ohashi Y, Ueno Y, Naraoka H, Tomita M, Nishioka T (2003) Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res 2:488–494

    Article  CAS  PubMed  Google Scholar 

  82. Stein SE (1999) An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J Am Soc Mass Spectrom 10:770–781

    Article  CAS  Google Scholar 

  83. Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Metabolic engineering, principles and methodologies. Academic, San Diego

    Google Scholar 

  84. Streikov S, Elstermann M von, Schomburg D (2004) Comprehensive analysis of metabolites in Corynebacterium glutamicum by gas chromatography/mass spectrometry. Biol Chem 385:853–861

    Article  PubMed  Google Scholar 

  85. Sweetlove LJ, Last RL, Fernie AR (2003) Predictive metabolic engineering: a goal for systems biology. Plant Physiol 132:420–425

    Article  CAS  PubMed  Google Scholar 

  86. Taylor J, King RD, Altmann T, Fiehn O (2002) Application of metabolomics to plant phenotype discrimination using statistics and machine learning. Bioinformatics 18 [Suppl 2]:S241–S248

    Google Scholar 

  87. Terabe S, Markuszewksi MJ, Inoue N, Otsuka K, Nishioka T (2001) Capillary electrophoretic techniques toward the metabolome analysis. Pure Appl Chem 73:1563–1572

    CAS  Google Scholar 

  88. Kuile BH ter, Westerhoff HV (2001) Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett 500:169–171

    Article  CAS  PubMed  Google Scholar 

  89. Theobald U, Mailinger W, Reuss M, Rizzi M (1993) In vivo analysis of glucose-induced fast changes in yeast adenine nucleotide pool applying a rapid sampling technique. Anal Biochem 214:31–37

    Article  CAS  PubMed  Google Scholar 

  90. Tolstikov VV, Fiehn O (2002) Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal Biochem 301:298–307

    Article  CAS  PubMed  Google Scholar 

  91. Tolstikov VV, Lommen A, Nakanishi K, Tanaka N, Fiehn O (2003) Monolithic silica-based capillary reversed-phase liquid chromatography/electrospray mass spectrometry for plant metabolomics. Anal Chem 75:6737–6740

    Article  CAS  PubMed  Google Scholar 

  92. Tweeddale H, Notley-McRobb L, Ferenci T (1998) Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (Metabolome) analysis. J Bacteriol 180:5109–5116

    CAS  PubMed  Google Scholar 

  93. Tweeddale H, Notley-McRobb L, Ferenci T (1999) Assessing the effect of reactive oxygen species on Escherichia coli using a metabolome approach. Redox Rep 4:237–241

    Article  CAS  PubMed  Google Scholar 

  94. Uribelarrea JL, Pacaud S, Goma G (1985) New method for measuring the cell water content by thermogravimetry. Biotechnol Lett 7:75–80

    Article  Google Scholar 

  95. Vaidyanathan S, Goodacre R (2003) Metabolome and proteome profiling for microbial characterization. In: Harrigan GG, Goodacre R (eds) Metabolic profiling: its role in biomarker discovery and gene function analysis. Kluwer, Boston, pp 9–38

    Google Scholar 

  96. Dam JC van, Eman MR, Frank J, Lange HC, Dedem GWK, Heijnen SJ (2002) Analysis of glycolytic intermediates in Saccharomyces cerevisiae using anion exchange chromatography and electrospray ionization with tandem mass spectrometric detection. Anal Chim Acta 460:209–218

    Google Scholar 

  97. Greef J van der, Davidov E, Verheij E, Vogels J, Heijden R van der, Adourian AS, Oresic M, Marple EW, Naylor S (2003) The role of metabolomics in systems biology. In: Harrigan GG, Goodacre R (eds) Metabolic profiling: its role in biomarker discovery and gene function analysis. Kluwer, Boston, pp 171–198

    Google Scholar 

  98. Werf MJ van der (2005) Towards replacing closed with open target selection approaches. Trends Biotechnol 23:11–16

    PubMed  Google Scholar 

  99. Vicente MF, Basilio A, Cabello A, Pelaez F (2002) Microbial natural products as a source of antifungals. Clin Microbiol Infect 9:15–32

    Google Scholar 

  100. Vogt AM, Ackermann C, Noe T, Jensen D, Kubler W (1998) Simultaneous detection of high energy phosphates and metabolites of glycolysis and the Krebs cycle by HPLC. Biochem Biophys Res Commun 248:527–532

    Article  CAS  PubMed  Google Scholar 

  101. Wahl HG, Hoffmann A, Luft D, Liebich HM (1999) Analysis of volatile organic compounds in human urine by headspace gas chromatography-mass spectrometry with a multipurpose sampler. J Chromatogr A 847:117–125

    CAS  PubMed  Google Scholar 

  102. Walsh K, Koshland DE (1984) Determination of flux through the branch point of two metabolic cycles. The tricarboxylic acid cycle and the glyoxylate shunt. J Biol Chem 259:9646–9654

    CAS  PubMed  Google Scholar 

  103. Weuster-Botz D, Graaf AA de (1996) Reaction engineering methods to study intracellular metabolite concentrations. Adv Biochem Eng 54:75–108

    CAS  Google Scholar 

  104. Wilkinson SR, Young M, Goodacre R, Morris JG, Farrow JAE, Collins MD (1995) Phenotypic and genotypic differences between certain strains of Clostridium acetobutylicum. FEMS Microbiol Lett 125:199–204

    Article  CAS  Google Scholar 

  105. Wittmann C, Heinzle E (2002) Genealogy profiling through strain improvement by suing metabolic network analysis: metabolic flux genealogy of several generations of lysine-producing corynebacteria. Appl Environ Microbiol 68:5843–5859

    Google Scholar 

  106. Yang YH, Speed T (2002) Design issues for cDNA microarray experiments. Nat Genet 3:579–588

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariët J. van der Werf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werf, M.J.v.d., Jellema, R.H. & Hankemeier, T. Microbial metabolomics: replacing trial-and-error by the unbiased selection and ranking of targets. J IND MICROBIOL BIOTECHNOL 32, 234–252 (2005). https://doi.org/10.1007/s10295-005-0231-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-005-0231-4

Keywords

Navigation