Skip to main content
Log in

Artificial ionospheric wave number 4 structure below the F2 region due to the Abel retrieval of radio occultation measurements

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

We analyzed the effect of the Abel inversion on the wave number 4 (WN4) structure from the GPS radio occultation (RO)–measured electron densities by using the FORMOSAT-3/COSMIC (F-3/C) observations under the equinox condition. The Abel-retrieved electron density from both the F-3/C observations and the simulated results by an empirical model with an imposed WN4 structure in the F layer are investigated. It is found that the Abel inversion can reproduce the real WN4 structure well in the F2 layer. However, it will result in pseudo and reversed-phase WN4 structure in the lower altitude (F1 and E layers). Quantitatively, relative ±15% WN4 signature in the F2 layer can produce ±40% artificial WN4 in the E and F1 layers. Analysis on the F-3/C data shows about ±15% WN4 signature in the F2 layer and ±50% WN4 with reversed-phase in the E and F1 layers. The F-3/C-observed WN4 structure in the E and F1 layers might be the combinations of the real WN4 signature and the artificial effects of Abel retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chiu YT (1975) An improved phenomenological model of ionospheric density. J Atmos Terr Phys 37:1563–1570

    Article  Google Scholar 

  • England SL, Immel TJ, Huba JD, Hagan ME, Maute A, DeMajistre R (2010) Modeling of multiple effects of atmospheric tides on the ionosphere: an examination of possible coupling mechanisms responsible for the longitudinal structure of the equatorial ionosphere. J Geophys Res 115:A05308. doi:10.1029/2009JA014894

    Article  Google Scholar 

  • Hagan ME, Maute A, Roble RG (2009) Tropospheric tidal effects on the middle and upper atmosphere. J Geophys Res 114:A01302. doi:10.1029/2008JA013637

    Article  Google Scholar 

  • Immel TJ, Sagawa E, England SL, Henderson SB, Hagan ME, Mende SB, Frey HU, Swenson CM, Paxton LJ (2006) Control of equatorial ionospheric morphology by atmospheric tides. Geophys Res Lett 33:L15108. doi:10.1029/2006GL026161

    Article  Google Scholar 

  • Lei J et al (2007) Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: preliminary results. J Geophys Res 112:A07308. doi:10.1029/2006JA012240

    Article  Google Scholar 

  • Lei J, Yue X, Schreiner WS (2010) Comment on A new aspect of ionospheric E region electron density morphology. In: Y.-H. Chu, K.-H. Wu and C.-L. Su. J Geophys Res 115: A07313. doi:10.1029/2009JA015234

  • Lin CH, Wang W, Hagan ME, Hsiao CC, Immel TJ, Hsu ML, Liu JY, Paxton LJ, Fang TW, Liu CH (2007) Plausible effect of atmospheric tides on the equatorial ionosphere observed by the FORMOSAT-3/COSMIC: three-dimensional electron density structures. Geophys Res Lett 34:L11112. doi:10.1029/2007GL029265

    Article  Google Scholar 

  • Liu JY, Lin CY, Lin CH, Tsai HF, Solomon S, Sun YY, Lee IT, Schreiner WS, Kuo YH (2010) Artificial plasma cave in the low latitude ionosphere results from the radio occultation inversion of the FORMOSAT 3/COSMIC. J Geophys Res 115:A07319. doi:10.1029/2009JA015079

    Article  Google Scholar 

  • Rocken C, Kuo YH, Schreiner WS, Hunt DC, Sokolovskiy SV, McCormick C (2000) COSMIC system description. Terr Atmos Ocean Sci 11(1):21–52

    Google Scholar 

  • Sagawa E, Immel TJ, Frey HU, Mende SB (2005) Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV. J Geophys Res 110:A11302. doi:10.1029/2004JA010848

    Article  Google Scholar 

  • Schreiner WS, Sokolovskiy SV, Rocken C, Hunt DC (1999) Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci 34(4):949–966

    Article  Google Scholar 

  • Schreiner WS, Rocken C, Sokolovskiy SV, Syndergaard S, Hunt DC (2007) Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission. Geophys Res Lett 34:L04808. doi:10.1029/2006GL027557

    Article  Google Scholar 

  • Syndergaard S, Schreiner WS, Rocken C, Hunt DC, Dymond KF (2006) Preparing for COSMIC: inversion and analysis of ionospheric data products. In: Foelsche U, Kirchengast G, Steiner AK (eds) Atmosphere and climate: studies by occultation methods, part 4. Springer, Berlin, pp 137–146. doi:10.1007/3-540-34121-8_12

  • Wan W, Liu L, Pi X, Zhang ML, Ning B, Xiong J, Ding F (2008) Wavenumber-4 patterns of the total electron content over the low latitude ionosphere. Geophys Res Lett 35:L12104. doi:10.1029/2008GL033755

    Article  Google Scholar 

  • Yue X, Schreiner WS, Lei J, Sokolovskiy SV, Rocken C, Hunt DC, Kuo YH (2010) Error analysis of Abel retrieved electron density profiles from radio occultation measurements. Ann Geophys 28:217–222

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation under Grant No. AGS-0961147.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinan Yue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yue, X., Schreiner, W.S., Rocken, C. et al. Artificial ionospheric wave number 4 structure below the F2 region due to the Abel retrieval of radio occultation measurements. GPS Solut 16, 1–7 (2012). https://doi.org/10.1007/s10291-010-0201-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-010-0201-9

Keywords

Navigation