Skip to main content
Log in

uPA/PAI-1, Oncotype DX™, MammaPrint® Valeurs pronostique et prédictive pour une utilité clinique dans la prise en charge du cancer du sein

uPA/PAI-1, Oncotype DX™, MammaPrint® Prognosis and predictive values for clinical utility in breast cancer management

  • Article de Référence - INCA/Standard Reference Article - INCA
  • Published:
Oncologie

Résumé

Introduction

Dans le cancer du sein, le développement des marqueurs biologiques pronostiques ou prédictifs a pour objectif de mieux identifier les patientes pour lesquelles un traitement par chimiothérapie pourrait être évité ou a contrario indiqué. Dans ce contexte, en 2009, l’Institut national du cancer (INCa), agence sanitaire et scientifique de l’État chargée de coordonner les actions de lutte contre le cancer, avait publié en partenariat avec la Société française de sénologie et de pathologie mammaire un rapport sur l’état des connaissances relatives aux biomarqueurs uPA/PAI-1, Oncotype DX™ et MammaPrint® dans la prise en charge du cancer du sein. Ce rapport avait montré que seule la valeur pronostique d’uPA/PAI-1 atteignait le plus haut niveau de preuve (LOE I selon la grille de Hayes 1998). En 2012, devant la parution de nouvelles publications et la divergence des messages diffusés sur les signatures moléculaires, il a été décidé d’actualiser le rapport de 2009. Cet article présente les principales conclusions accompagnées de leurs niveaux de preuve.

Méthode

Le processus de mise à jour s’est appuyé sur l’analyse des données publiées depuis la recherche bibliographique de 2009, complétée par l’avis d’un groupe de travail multidisciplinaire indépendant. Les niveaux de preuve employés sont ceux de la classification définie par Simon en 2009 (grille de Hayes 1998 après mise à jour): LOE IA et LOE IB: niveau de preuve élevé; LOE IIB and LOE IIC: niveau de preuve intermédiaire; LOE IIIC and LOE IV-VD.: niveau de preuve faible.

Conclusions

Chez les patientes pN0, uPA/PAI-1, marqueurs d’invasion, ont un niveau de preuve élevé (LOE IA selon Simon) pour la valeur pronostique de la survie sans récidive à 10 ans. Il reste à confirmer leur valeur prédictive de réponse aux anthracyclines. Aucune donnée médicoéconomique sur uPA/PAI-1 n’a pu être identifiée. Pour Oncotype DX™ et MammaPrint®, les valeurs pronostique et prédictive n’ont pas atteint à ce jour le niveau de preuve LOE I. Ce travail confirme les niveaux de preuve précédemment établis dans le rapport de 2009. Par ailleurs, les données ne permettent pas de conclure à une valeur ajoutée de ces deux tests par rapport aux outils existants. Les données médicoéconomique ne permettent pas de statuer sur le rapport coût/efficacité des stratégies utilisant ces tests dans la décision thérapeutique compte tenu d’un niveau de qualité insuffisant pour la plupart des études et d’une forte incertitude mise en évidence par les quelques études bien menées. En pratique, au-delà des niveaux de preuve attribuables à la valeur pronostiqu et prédictive d’un biomarqueur, l’utilité clinique d’un nouveau marqueur dans l’aide à la prescription d’une chimiothérapie repose sur sa valeur ajoutée par rapport aux marqueurs validés (RH, HER2 et les marqueurs de prolifération comme Ki67) et aux critères anatomocliniques. Puisqu’ils sont les seuls marqueurs validés à témoigner du processus d’invasion, uPA/PAI-1 peuvent apporter une information complémentaire et donc avoir une valeur ajoutée par rapport aux marqueurs existants. Les données de la littérature manquent pour apprécier le poids de cette valeur ajoutée dans la décision de prescrire ou non une chimiothérapie.

Abstract

Context and Aims

Breast cancer prognosis and predictive biomarkers development would allow sparing some patients from chemotherapy or identifying patients for whom chemotherapy would be indicated. In this context, in 2009, the French National Cancer Institute, a National Health and Science Agency dedicated to cancer, in collaboration with the « Société française de sénologie et de pathologie mammaire » published a report on the assessment of the prognostic and the predictive clinical validity of tissular biomarkers, uPA/PAI-1, Oncotype DX™ and MammaPrint ®, in breast cancer management. They concluded that only the uPA/PAI-1 prognosis value reached the highest level of evidence (LOE I according to Hayes 1998 classification). In 2012, it was decided to update this report since new data have emerged and because information disparities among clinicians have been identified. This article aims to present the main conclusions together with the levels of evidence associated with those conclusions.

Methods

The updating process was based on literature published since 2009 appraisal and on multidisciplinary and independent experts’ opinion. The levels of evidence (LOE) used are those of the classification defined by Simon in 2009 (updated Hayes 1998 classification): LOE IA and LOE IB: high level of evidence; LOE IIB and LOE IIC: intermediate level of evidence; LOE IIIC and LOE IV-VD: low level of evidence.

Conclusions

Among patients without lymph-node involvement, uPA/PAI-1, invasion process biomarkers, reach the highest level of evidence for 10 years recurrence free survival prognosis (LOE IA according to Simon). The predictive value to anthracyclins chemotherapy remains to be confirmed. No data were identified on uPA/PAI-1 medico-economic value. Oncotype DX™ and MammaPrint® prognosis and predictive value do not reach the LOE I level. This updating’ process confirms the 2009 levels of evidence for all the three biomarkers prognosis value. Besides, concerning Oncotype DX™ and MammaPrint®, new data do not allow to conclude neither to their complementary clinical information to other clinicopathological existing biomarkers nor to a favorable cost-efficiency ratio in therapeutic decision making and this because of the methodological weakness and uncertainty that are identified in the selected studies. Practically, beyond the prognosis and predictive biomarkers validity, the clinical utility of a new biomarker for chemotherapy indication depends on its clinical added information with regard to validated biomarkers (HR, HER2 and Ki67) and to clinicopathological parameters. Since they are the sole validated biomarkers of the invasion process, uPA/PAI-1 could complete clinical information of other clinicopathological factors and consequently could confer an added clinical value. However, data concerning the impact of this information on chemotherapy clinical indication are lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Références bibliographiques

  1. (1998) Polychemotherapy for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists’ Collaborative Group. Lancet 352: 930–942

  2. (1998) Tamoxifen for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists’ Collaborative Group. Lancet 351: 1451–1467

  3. (2002) Multi-agent chemotherapy for early breast cancer. Cochrane Database Syst Rev: CD000487

  4. (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365: 1687–1717

  5. Albain KS, Barlow WE, Shak S et al. (2010) Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol 11: 55–65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Altman DG, McShane LM, Sauerbrei W et al. (2012) Reporting recommendations for tumor marker prognostic studies (REMARK): explanation and elaboration. BMC Med 10: 51

    Article  PubMed Central  PubMed  Google Scholar 

  7. Auerbach J, Kim M, Fineberg S (2010) Can features evaluated in the routine pathologic assessment of lymph node-negative estrogen receptor-positive stage I or II invasive breast cancer be used to predict the Oncotype DX recurrence score? Arch Pathol Lab Med 134: 1697–1701

    PubMed  Google Scholar 

  8. Bacchi CE, Prisco F, Carvalho FM et al. (2010) Potential economic impact of the 21-gene expression assay on the treatment of breast cancer in Brazil. Rev Assoc Med Bras 56: 186–191

    Article  PubMed  Google Scholar 

  9. Baehner FL, Achacoso N, Maddala T et al. (2010) Human epidermal growth factor receptor 2 assessment in a case-control study: comparison of fluorescence in situ hybridization and quantitative reverse transcription polymerase chain reaction performed by central laboratories. J Clin Oncol 28: 4300–4306

    Article  PubMed  Google Scholar 

  10. Borstnar S, Sadikov A, Mozina B et al. (2010) High levels of uPA and PAI-1 predict a good response to anthracyclines. Breast Cancer Res Treat 121: 615–624

    Article  CAS  PubMed  Google Scholar 

  11. Chen E, Tong KB, Malin JL (2010) Cost-effectiveness of 70-gene MammaPrint signature in node-negative breast cancer. Am J Manag Care 16: e333–e342

    PubMed  Google Scholar 

  12. Cronin M, Sangli C, Liu ML et al. (2007) Analytical validation of the Oncotype DX genomic diagnostic test for recurrence prognosis and therapeutic response prediction in node-negative, estrogen receptor-positive breast cancer. Clin Chem 53: 1084–1091

    Article  CAS  PubMed  Google Scholar 

  13. Cuzick J, Dowsett M, Pineda S et al. (2011) Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the Genomic Health recurrence score in early breast cancer. J Clin Oncol 29: 4273–4278

    Article  PubMed  Google Scholar 

  14. Dabbs DJ, Klein ME, Mohsin SK et al. (2011) High false-negative rate of HER2 quantitative reverse transcription polymerase chain reaction of the Oncotype DX test: an independent quality assurance study. J Clin Oncol 29: 4279–4285

    Article  PubMed  Google Scholar 

  15. Dowsett M, Cuzick J, Wale C et al. (2010) Prediction of risk of distant recurrence using the 21-gene recurrence score in nodenegative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC study. J Clin Oncol 28: 1829–1834

    Article  PubMed  Google Scholar 

  16. Espinosa E, Sanchez-Navarro I, Gamez-Pozo A et al. (2009) Comparison of prognostic gene profiles using qRT- PCR in paraffin samples: a retrospective study in patients with early breast cancer. PLoS ONE [Electronic Resource] 4: e5911

    Article  Google Scholar 

  17. Flanagan MB, Dabbs DJ, Brufsky AM et al. (2008) Histopathologic variables predict Oncotype DX recurrence score. Mod Pathol 21: 1255–1261

    Article  CAS  PubMed  Google Scholar 

  18. Gluck S, Yip AY, Ng EL (2012) Can we replace the microscope with microarrays for diagnosis, prognosis and treatment of early breast cancer? Expert Opin Ther Targets 16Suppl 1: S17–S22

    Article  PubMed  Google Scholar 

  19. Gwin K, Pinto M, Tavassoli FA (2009) Complementary value of the Ki-67 proliferation index to the oncotype DX recurrence score. Int J Surg Pathol 17: 303–310

    Article  CAS  PubMed  Google Scholar 

  20. Haas S, Park TW, Hahne JC et al. (2008) Influence of preoperative core biopsies on uPA/PAI-1 expression in breast cancer tissue. Virchows Arch 452: 277–283

    Article  CAS  PubMed  Google Scholar 

  21. Hall PS, McCabe C, Stein RC et al. (2012) Economic evaluation of genomic test-directed chemotherapy for early-stage lymph node-positive breast cancer. J Natl Cancer Inst 104: 56–66

    Article  PubMed  Google Scholar 

  22. Hayes DF, Bast RC, Desch CE et al. (1996) Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers. J Natl Cancer Inst 88: 1456–1466

    Article  CAS  PubMed  Google Scholar 

  23. Hayes DF, Trock B, Harris AL (1998) Assessing the clinical impact of prognostic factors: when is «statistically significant» clinically useful? Breast Cancer Res Treat 52: 305–319

    Article  CAS  PubMed  Google Scholar 

  24. Hery M, Delozier T, Ramaioli A et al. (2002) Natural history of node-negative breast cancer: are conventional prognostic factors predictors of time to relapse? Breast 11: 442–448

    Article  PubMed  Google Scholar 

  25. Hornberger J, Chien R, Krebs K et al. (2011) US insurance program’s experience with a multigene assay for early-stage breast cancer. Am J Manag Care 17: e194–e202

    PubMed  Google Scholar 

  26. Hornberger J, Cosler LE, Lyman GH (2005) Economic analysis of targeting chemotherapy using a 21-gene RT-PCR assay in lymph-node-negative, estrogen-receptor-positive, early-stage breast cancer. Am J Manag Care 11: 313–324

    PubMed  Google Scholar 

  27. Kao KJ, Chang KM, Hsu HC et al. (2011) Correlation of microarray-based breast cancer molecular subtypes and clinical outcomes: implications for treatment optimization. BMC Cancer 11143, 2011.

    Google Scholar 

  28. Kelly CM, Krishnamurthy S, Bianchini G et al. (2010) Utility of oncotype DX risk estimates in clinically intermediate risk hormone receptor-positive, HER2-normal, grade II, lymph node-negative breast cancers. Cancer 116: 5161–5167

    Article  PubMed  Google Scholar 

  29. Klang SH, Hammerman A, Liebermann N et al. (2010) Economic implications of 21-gene breast cancer risk assay from the perspective of an Israeli-managed health-care organization. Value Health 13: 381–387

    Article  PubMed  Google Scholar 

  30. Kondo M, Hoshi SL, Ishiguro H et al. (2012) Economic evaluation of the 70-gene prognosis-signature (MammaPrint(R)) in hormone receptor-positive, lymph node-negative, human epidermal growth factor receptor type 2-negative early stage breast cancer in Japan. Breast Cancer Res Treat 133: 759–768

    Article  PubMed  Google Scholar 

  31. Kondo M, Hoshi SL, Ishiguro H et al. (2008) Economic evaluation of 21-gene reverse transcriptase-polymerase chain reaction assay in lymph-node-negative, estrogen-receptor-positive, early-stage breast cancer in Japan. Breast Cancer Res Treat 112: 175–187

    Article  PubMed  Google Scholar 

  32. Kondo M, Hoshi SL, Yamanaka T et al. (2011) Economic evaluation of the 21-gene signature (Oncotype DX) in lymph node-negative/positive, hormone receptor-positive early-stage breast cancer based on Japanese validation study (JBCRG-TR03). Breast Cancer Res Treat 127: 739–749

    Article  PubMed  Google Scholar 

  33. Lamond NW, Skedgel C, Rayson D et al. (2012) Cost-utility of the 21-gene recurrence score assay in node-negative and node-positive breast cancer. Breast Cancer Res Treat 133: 1115–1123

    Article  PubMed  Google Scholar 

  34. Lyman GH, Cosler LE, Kuderer NM et al. (2007) Impact of a 21-gene RT-PCR assay on treatment decisions in early-stage breast cancer: an economic analysis based on prognostic and predictive validation studies. Cancer 109: 1011–1018

    Article  PubMed  Google Scholar 

  35. Medical Advisory Secretariat (2010) Gene expression profiling for guiding adjuvant chemotherapy decisions in women with early breast cancer: an evidence-based and economic analysis. Ont Health Technol Assess Ser 10: 1–57

    Google Scholar 

  36. Mook S, Bonnefoi H, Pruneri G et al. (2009) Daily clinical practice of fresh tumour tissue freezing and gene expression profiling; logistics pilot study preceding the MINDACT trial. Eur J Cancer 45: 1201–1208

    Article  CAS  PubMed  Google Scholar 

  37. O’Connor SM, Beriwal S, Dabbs DJ et al. (2010) Concordance between semiquantitative immunohistochemical assay and oncotype DX RT- PCR assay for estrogen and progesterone receptors. Appl Immunohistochem Mol Morphol 18: 268–272

    Article  PubMed  Google Scholar 

  38. Oestreicher N, Ramsey SD, Linden HM et al. (2005) Gene expression profiling and breast cancer care: what are the potential benefits and policy implications? Genet Med 7: 380–389

    Article  PubMed  Google Scholar 

  39. Retel VP, Joore MA, Knauer M et al. (2010) Cost-effectiveness of the 70-gene signature versus St. Gallen guidelines and Adjuvant Online for early breast cancer. Eur J Cancer 46: 1382–1391

    Article  PubMed  Google Scholar 

  40. Retel VP, Joore MA, van Harten WH (2012) Head-to-head comparison of the 70-gene signature versus the 21-gene assay: cost-effectiveness and the effect of compliance. Breast Cancer Res Treat 131: 627–636

    Article  PubMed  Google Scholar 

  41. Sahebjam S, Aloyz R, Pilavdzic D et al. (2011) Ki 67 is a major, but not the sole determinant of Oncotype Dx recurrence score. Br J Cancer 105: 1342–1345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Simon RM, Paik S, Hayes DF (2009) Use of archived specimens in evaluation of prognostic and predictive biomarkers. J Natl Cancer Inst 101: 1446–1452

    Article  PubMed Central  PubMed  Google Scholar 

  43. Sturgeon CM, Hoffman BR, Chan DW et al. (2008) National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines for use of tumor markers in clinical practice: quality requirements. Clin Chem 54: e1–e10

    Article  CAS  PubMed  Google Scholar 

  44. Sun B, Zhang F, Wu SK et al. (2011) Gene expression profiling for breast cancer prognosis in Chinese populations. Breast J 17: 172–179

    Article  CAS  PubMed  Google Scholar 

  45. Sundquist M, Thorstenson S, Brudin L et al. (2002) Incidence and prognosis in early onset breast cancer. Breast 11: 30–35

    Article  CAS  PubMed  Google Scholar 

  46. Sweep CG, Geurts-Moespot J, Grebenschikov N et al. (1998) External quality assessment of trans-European multicentre antigen determinations (enzyme-linked immunosorbent assay) of urokinase-type plasminogen activator (uPA) and its type 1 inhibitor (PAI-1) in human breast cancer tissue extracts. Br J Cancer 78: 1434–1441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Tang P, Wang J, Hicks DG et al. (2010) AÀ lower Allred score for progesterone receptor is strongly associated with a higher recurrence score of 21-gene assay in breast cancer. Cancer Invest 28: 978–982

    Article  PubMed  Google Scholar 

  48. Teutsch SM, Bradley LA, Palomaki GE et al. (2009) The Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Initiative: methods of the EGAPP Working Group. Genet Med 11: 3–14

    Article  PubMed Central  PubMed  Google Scholar 

  49. Tsoi DT, Inoue M, Kelly CM et al. (2010) Cost-effectiveness analysis of recurrence score-guided treatment using a 21-gene assay in early breast cancer. Oncologist 15: 457–465

    Article  PubMed Central  PubMed  Google Scholar 

  50. Vanderlaan BF, Broder MS, Chang EY et al. (2011) Cost-effectiveness of 21-gene assay in node-positive, early-stage breast cancer. Am J Manag Care 17: 455–464

    PubMed  Google Scholar 

  51. Vataire AL, Laas E, Aballea S et al. (2012) [Cost-effectiveness of a chemotherapy predictive test] Analyse cout-efficacite d’un test prédictif de la chimiothérapie dans le cancer du sein (Oncotype DX®) en France. Bull Cancer 99: 907–914

    PubMed  Google Scholar 

  52. Ward S, Scope A, Rafia R, Pandor A et al. (2011) Gene expression profiling and expanded immunohistochemistry tests to guide the use of adjuvant chemotherapy in breast cancer management. http://www.nice.org.uk/nicemedia/live/13283/57998/57998.pdf

    Google Scholar 

  53. Williams DJ, Cohen C, Darrow M et al. (2011) Proliferation (Ki-67 and phosphohistone H3) and oncotype DX recurrence score in estrogen receptor-positive breast cancer. Appl Immunohistochem Mol Morphol 19: 431–436

    Article  CAS  PubMed  Google Scholar 

  54. Yang M, Rajan S, Issa AM (2012) Cost effectiveness of gene expression profiling for early stage breast cancer: A decision-analytic model. Cancer 118: 5163–5170

    Article  PubMed  Google Scholar 

  55. Yorozuya K, Takeuchi T, Yoshida M et al. (2010) Evaluation of Oncotype DX Recurrence Score as a prognostic factor in Japanese women with estrogen receptor-positive, node-negative primary Stage I or IIA breast cancer. J Cancer Res Clin Oncol 136: 939–944

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kassab-Chahmi.

Additional information

These authors contributed equally to this work/co-auteurs équivalents

About this article

Cite this article

Luporsi, E., Bellocq, J.P., Barrière, J. et al. uPA/PAI-1, Oncotype DX™, MammaPrint® Valeurs pronostique et prédictive pour une utilité clinique dans la prise en charge du cancer du sein. Oncologie 16, 196–206 (2014). https://doi.org/10.1007/s10269-014-2379-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10269-014-2379-x

Keywords

Mots clés

Navigation