Skip to main content
Log in

Correlation between pollen morphology and pollination mechanisms in the Hydrocharitaceae

  • Original Article
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The pollen morphology of 11 genera and 11 species of the Hydrocharitaceae and one species of the Najadaceae was studied using scanning and transmission electron microscopies, and the exine structures and sculptures are discussed in relation to pollination mechanisms and the molecular phylogeny. The pollen grains of the Hydrocharitaceae are spherical, inaperturate, and form monads or tetrads, while those of the Najadaceae are elliptical, inaperturate, and form monads. The entomophilous genera Egeria, Blyxa, Ottelia, Stratiotes, and Hydrocharis share pollen grains that have projections like spines or bacula. The anemophilous genus Limnobium has reticulate pollen grains. The hypohydrophilous genera Thalassia and Najas are characterized by pollen grains with reduced exine structures. The pollen-epihydrophilous genera Elodea and Hydrilla have tightly arranged small spinous pollen grains, and the male flower-epihydrophilous genera Enhalus and Vallisneria have reduced reticulate or gemmate exines. Character state reconstruction of the exine structures and sculptures using a molecular phylogenetic tree suggests that variation in the exine is generally correlated with the pollination mechanism; the selective pressures acting on the pollination mechanisms have reduced the exine structure in hypohydrophilous plants and resulted in various exine sculptures that are adapted to the different pollination mechanisms in entomophilous, anemophilous, and pollen-epihydrophilous plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7A, B

Similar content being viewed by others

References

  • Angiosperm Phylogeny Group (2003) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436

    Google Scholar 

  • Cook CDK (1982) Pollination mechanisms in the Hydrocharitaceae. In: Symoens JJ, Hooper SS, Compere P (eds) Studies on aquatic vascular plants. Royal Botanical Society of Belgium, Brussels, pp 1–15

  • Cook CDK (1985) A revision of the genus Apalanthe (Hydrocharitaceae). Aquat Bot 21:157–164

    Article  Google Scholar 

  • Cook CDK (1988) Wind pollination in aquatic angiosperms. Ann Mo Bot Gard 75:768–777

    Google Scholar 

  • Cook CDK (1996) Aquatic plant book. SPB, Amsterdam

  • Cook CDK, Luond R (1982a) A revision of the genus Nechamandra (Hydrocharitaceae). Aquat Bot 13:505–513

    Article  Google Scholar 

  • Cook CDK, Luond R (1982b) A revision of the genus Hydrocharis (Hydrocharitaceae). Aquat Bot 14:177–204

    Article  Google Scholar 

  • Cook CDK, Luond R (1983) A revision of the genus Blyxa (Hydrocharitaceae). Aquat Bot 15:1–52

    Article  Google Scholar 

  • Cook CDK, Urmi-Koenig K (1983) A revision of the genus Limnobium including Hydromystria (Hydrocharitaceae). Aquat Bot 17:1–27

    Article  CAS  Google Scholar 

  • Cook CDK, Urmi-Koenig K (1984) A revision of the genus Egeria (Hydrocharitaceae). Aquat Bot 19:73–96

    Article  Google Scholar 

  • Cook CDK, Urmi-Koenig K (1985) A revision of the genus Elodea (Hydrocharitaceae). Aquat Bot 21:111–156

    Article  Google Scholar 

  • Cook CDK, Symoens J, Urmi-Koenig K (1984) A revision of the genus Ottelia (Hydrocharitaceae). I. Generic considerations. Aquat Bot 18:263–274

    Article  Google Scholar 

  • Crane PR, Fris EM, Pedersen KR (1995) The origin and early diversification of angiosperms. Nature 374:27–33

    CAS  Google Scholar 

  • Dahlgren RMT, Clifford HT, Yeo PF (1985) The families of the monocotyledons. Structure, evolution, and taxonomy. Springer, Berlin Heidelberg New York

  • Erdtman G (1960) The acetolysis method. A revised description. Sven Bot Tidskr 54:561–564

    Google Scholar 

  • Furness CA, Rudall PJ (1999) Inaperturate pollen in Monocotyledons. Int J Plant Sci 160:395–414

    Article  Google Scholar 

  • Grayum MH (1992) Comparative external pollen ultrastructure of the Araceae and putatively related taxa. Missouri Botanical Garden, St. Louis, Missouri

  • Harley MM, Kurmann MH, Ferguson IK (1991) Systematic implications of comparative morphology in selected Tertiary and extant pollen from the Palmae and the Sapotaceae. Pollen Spores 44:225–238

    Google Scholar 

  • Heslop-Harrison J (1976) The adaptive significance of the exine. In: Ferguson IK, Muller J (eds) The evolutionary significance of the exine. Linnean Society Symposium Series 1. The Linnean Society of London, London, pp 27–37

  • Hesse M (2000) Pollen wall stratification and pollination. Plant Syst Evol 222:1–17

    Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137A–138A

    Google Scholar 

  • Kaul RB (1970) Evolution and adaptation of inflorescences in the Hydrocharitaceae. Am J Bot 57:708–715

    Google Scholar 

  • Kress WJ (1986) Exineless pollen structure and pollination systems of tropical Heliconia (Heliconiaceae). In: Blackmore S, Ferguson IK (eds) Pollen and spores: form and function. The Linnean Society of London, London, pp 329–345

  • Kress WJ, Stone DE (1978) Ultrastructure of exine-less pollen; Heliconia (Heliconiaceae). Am J Bot 65:1064–1076

    Google Scholar 

  • Les DH, Cleland MA, Waycott M (1997) Phylogenetic studies in Alismatidae. II. Evolution of marine angiosperms (seagrasses) and hydrophily. Syst Bot 22:1–21

    Google Scholar 

  • Madisson WP, Maddison DR (1992) MacClade: analysis of phylogeny and character evolution. Version 3.0. Sinauer, Sunderland, Mass.

  • Mayo SJ, Bogner J, Boyce PC (1997) The genera of Araceae. Royal Botanic Gardens, Kew

  • Nilsson S (1990) Taxonomic and evolutionary significance of pollen morphology in the Apocynaceae. Plant Syst Evol 5[Suppl]:91–102

  • Pettitt JM (1980) Reproduction in seagrass: nature of the pollen and receptive surface of the stigma in the Hydrocharitaceae. Ann Bot 45:257–271

    CAS  Google Scholar 

  • Pettitt JM (1981) Reproduction in seagrasses: pollen development in Thalassia hemprighii, Halophila stipulacea and Thalassodendron ciliatum. Ann Bot 48:609–622

    Google Scholar 

  • Pettitt JM, Jermy AC (1975) Pollen in hydrophilous angiosperms. Micron 5:377–405

    Article  Google Scholar 

  • Proctor M, Yeo P, Lack A (1996) The natural history of pollination. Harper Collins, London

  • Scribailo RW, Posluszny U (1984) The reproductive biology of Hydrocharis morsus-ranae. I. Floral biology. Can J Bot 62:2779–2787

    Google Scholar 

  • Skvarla JJ, Rowley JR (1970) The pollen wall of Canna and its similarity to the germinal apertures of other pollen. Am J Bot 57: 519–529

    Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    CAS  PubMed  Google Scholar 

  • Takahashi M (1982) Pollen morphology in North American species of Trillium. Am J Bot 69:1185–1195

    Google Scholar 

  • Takahashi M (1983) Pollen morphology in Asiatic species of Trillium. Bot Mag (Tokyo) 96:377–384

    Google Scholar 

  • Takahashi M (1987) Development of omniaperturate pollen in Trillium kamtchaticum (Liliaceae). Am J Bot 74:1842–1852

    Google Scholar 

  • Takahashi M (1994) Pollen development in a submerged plant, Ottelia aismoides (L. ) Pers. (Hydrocharitaceae). J Plant Res 107:161–164

    Google Scholar 

  • Takahashi M (1995) Development of structure-less pollen wall in Ceratophyllum demersum L. (Ceratophyllaceae). J Plant Res 108:205–208

    Google Scholar 

  • Tanaka N (2000) Pollination of the genus Hydrilla (Hydrocharitaceae) by waterborne pollen grains. Ann Tsukuba Bot Gard 19:7–12

    Google Scholar 

  • Tanaka N (2003) Pollination of the genus Hydrilla (Hydrocharitaceae) by waterborne pollen grains. II. Air bubbles cause the male flower to surface. Ann Tsukuba Bot Gard 22:11–13

    Google Scholar 

  • Tanaka N, Setoguchi H, Murata J (1997) Phylogeny of the family Hydrocharitaceae inferred from rbcL and matK gene sequence data. J Plant Res 110:329–337

    CAS  Google Scholar 

  • Verhoeven JTA (1979) The ecology of Ruppia dominated communities in western Europe. I. Distribution of Ruppia representatives in relation to their autecology. Aquat Bot 6:197–268

    Article  CAS  Google Scholar 

  • Walker JW (1976) Evolutionary significance of the exine in the pollen of primitive angiosperms. In: Ferguson IK, Muller J (eds) The evolutionary significance of the exine. Linnean Symposium Society Series 1. Academic, New York, pp 251–308

  • Whitehead DR (1968) Wind pollination in the angiosperms: evolutionary and environmental considerations. Evolution 23:28–35

    Google Scholar 

  • Wodehouse RP (1935) Pollen grains. McGraw-Hill, New York

  • Zavada MS (1983) Comparative morphology of monocot pollen and evolutionary trends of apertures and wall structures. Bot Rev 49:331–379

    Google Scholar 

Download references

Acknowledgements

The authors thank Michio Wakabayashi and Hiroaki Setoguchi for critical reading of the manuscript and comments; Isao Uemura for technical guidance; Madjit Hakki, Yasuro Kadono, Keiko Aioi, Yuji Omori, Toshie Kikuchi, Yasuo Orime, Takashi Enomoto and Yuki Mikanagi for collecting plant materials; and Eitetsu Sugiyama and Takako Yasugi for cultivating plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, N., Uehara, K. & Murata, J. Correlation between pollen morphology and pollination mechanisms in the Hydrocharitaceae. J Plant Res 117, 265–276 (2004). https://doi.org/10.1007/s10265-004-0155-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-004-0155-5

Keywords

Navigation