Skip to main content
Log in

Constant mean curvature surfaces in warped product manifolds

  • Published:
Publications mathématiques de l'IHÉS Aims and scope Submit manuscript

Abstract

We consider surfaces with constant mean curvature in certain warped product manifolds. We show that any such surface is umbilic, provided that the warping factor satisfies certain structure conditions. This theorem can be viewed as a generalization of the classical Alexandrov theorem in Euclidean space. In particular, our results apply to the deSitter-Schwarzschild and Reissner-Nordstrom manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Alexandrov, Uniqueness theorems for surfaces in the large I, Vestn. Leningr. Univ., 11 (1956), 5–17.

    Google Scholar 

  2. J. L. Barbosa and M. do Carmo, Stability of hypersurfaces with constant mean curvature, Math. Z., 185 (1984), 339–353.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Bartnik, Energy in general relativity, in Tsing Hua Lectures on Geometry and Analysis (Hsinchu 1990–1991), pp. 5–27, International Press, Cambridge, 1997.

    Google Scholar 

  4. A. Besse, Einstein Manifolds, Classics in Mathematics, Springer, Berlin, 2008.

    MATH  Google Scholar 

  5. H. Bray, The Penrose Inequality in General Relativity and Volume Comparison Theorems Involving Scalar Curvature, Ph.D. Thesis, Stanford University, 1997.

  6. H. Bray and F. Morgan, An isoperimetric comparison theorem for Schwarzschild space and other manifolds, Proc. Am. Math. Soc., 130 (2002), 1467–1472.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Brendle and M. Eichmair, Isoperimetric and Weingarten surfaces in the Schwarzschild manifold, J. Differ. Geom., to appear.

  8. D. Christodoulou and S. T. Yau, Some remarks on the quasi-local mass, in Mathematics and General Relativity, Santa Cruz, 1986. Contemporary Mathematics, vol. 71, pp. 9–14, Am. Math. Soc., Providence, 1986.

    Chapter  Google Scholar 

  9. J. Corvino, Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Commun. Math. Phys., 214 (2000), 137–189.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Corvino, A. Gerek, M. Greenberg, and B. Krummel, On isoperimetric surfaces in general relativity, Pac. J. Math., 231 (2007), 63–84.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Eichmair and J. Metzger, Large isoperimetric surfaces in initial data sets, J. Differ. Geom., to appear.

  12. M. Eichmair and J. Metzger, On large volume preserving stable CMC surfaces in initial data sets, J. Differ. Geom., 91 (2012), 81–102.

    MathSciNet  MATH  Google Scholar 

  13. M. Eichmair and J. Metzger, Unique isoperimetric foliations of asymptotically flat manifolds in all dimensions, arXiv:1204.6065.

  14. R. Greene and H. Wu, On the subharmonicity and plurisubharmonicity of geodesically convex functions, Indiana Univ. Math. J., 22 (1973), 641–653.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Greene and H. Wu, C approximations of convex, subharmonic, and plurisubharmonic functions, Ann. Sci. Éc. Norm. Super., 12 (1979), 47–84.

    MathSciNet  Google Scholar 

  16. E. Heintze and H. Karcher, A general comparison theorem with applications to volume estimates for submanifolds, Ann. Sci. Éc. Norm. Super., 11 (1978), 451–470.

    MathSciNet  MATH  Google Scholar 

  17. O. Hijazi, S. Montiel, and A. Roldan, Dirac operators on hypersurfaces of manifolds with negative scalar curvature, Ann. Glob. Anal. Geom., 23 (2003), 247–264.

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Huisken and T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differ. Geom., 59 (2001), 353–437.

    MathSciNet  MATH  Google Scholar 

  19. G. Huisken and S. T. Yau, Definition of center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature, Invent. Math., 124 (1996), 281–311.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Montiel, Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds, Indiana Univ. Math. J., 48 (1999), 711–748.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Montiel and A. Ros, Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures, in H. Blaine Lawson Jr., K. Tenenblat (eds.), Differential Geometry, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 52, pp. 279–296, Longman, Harlow, 1991.

    Google Scholar 

  22. A. Neves and G. Tian, Existence and uniqueness of constant mean curvature foliation of asymptotically hyperbolic 3-manifolds, Geom. Funct. Anal., 19 (2009), 910–942.

    Article  MathSciNet  MATH  Google Scholar 

  23. F. Pacard and X. Xu, Constant mean curvature spheres in Riemannian manifolds, Manuscr. Math., 128 (2008), 275–295.

    Article  MathSciNet  Google Scholar 

  24. P. Petersen, Riemannian Geometry, 2nd ed., Graduate Texts in Mathematics, vol. 171, Springer, New York, 2006.

    MATH  Google Scholar 

  25. J. Qing and G. Tian, On the uniqueness of the foliation of spheres of constant mean curvature in asymptotically flat 3-manifolds, J. Am. Math. Soc., 20 (2007), 1091–1110.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Reiris, Static solutions from the point of view of comparison geometry, preprint (2011).

  27. R. Rigger, The foliation of asymptotically hyperbolic manifolds by surfaces of constant mean curvature, Manuscr. Math., 113 (2004), 403–421.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Brendle.

About this article

Cite this article

Brendle, S. Constant mean curvature surfaces in warped product manifolds. Publ.math.IHES 117, 247–269 (2013). https://doi.org/10.1007/s10240-012-0047-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-012-0047-5

Keywords

Navigation