Skip to main content
Log in

Khovanov homology is an unknot-detector

  • Published:
Publications mathématiques de l'IHÉS Aims and scope Submit manuscript

Abstract

We prove that a knot is the unknot if and only if its reduced Khovanov cohomology has rank 1. The proof has two steps. We show first that there is a spectral sequence beginning with the reduced Khovanov cohomology and abutting to a knot homology defined using singular instantons. We then show that the latter homology is isomorphic to the instanton Floer homology of the sutured knot complement: an invariant that is already known to detect the unknot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Akbulut, T. Mrowka, and Y. Ruan, Torsion classes and a universal constraint on Donaldson invariants for odd manifolds, Trans. Am. Math. Soc., 347 (1995), 63–76.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. A. Baldwin, On the spectral sequence from Khovanov homology to Heegaard Floer homology, prepint (2008).

  3. J. Bloom, A link surgery spectral sequence in monopole Floer homology, prepint (2009).

  4. P. J. Braam and S. K. Donaldson, Floer’s work on instanton homology, knots and surgery, in The Floer Memorial Volume, Progr. Math., vol. 133, pp. 195–256, Birkhäuser, Basel, 1995.

    Google Scholar 

  5. A. Dold and H. Whitney, Classification of oriented sphere bundles over a 4-complex, Ann. Math. (2), 69 (1959), 667–677.

    Article  MathSciNet  Google Scholar 

  6. S. K. Donaldson, The orientation of Yang-Mills moduli spaces and 4-manifold topology, J. Differ. Geom., 26 (1987), 397–428.

    MathSciNet  MATH  Google Scholar 

  7. S. K. Donaldson and P. B. Kronheimer, The geometry of four-manifolds, Oxford University Press, New York, 1990.

    MATH  Google Scholar 

  8. A. Floer, An instanton-invariant for 3-manifolds, Commun. Math. Phys., 118 (1988), 215–240.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Floer, Instanton homology, surgery, and knots, in Geometry of Low-Dimensional Manifolds, 1, London Math. Soc. Lecture Note Ser., vol. 150, pp. 97–114, Cambridge Univ. Press, Cambridge, 1990.

    Google Scholar 

  10. J. E. Grigsby and S. Wehrli, On the colored Jones polynomial, sutured Floer homology, and knot Floer homology, Adv. Math., 223 (2010), 2114–2165.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Hedden, Khovanov homology of the 2-cable detects the unknot, Math. Res. Lett., 16 (2009), 991–994.

    MathSciNet  MATH  Google Scholar 

  12. M. Hedden and L. Watson, Does Khovanov homology detect the unknot? Am. J. Math. (2010). doi:10.1353/ajm.2010.0005.

    MathSciNet  Google Scholar 

  13. A. Juhász, Holomorphic discs and sutured manifolds, Algebr. Geom. Topol., 6 (2006), 1429–1457, electronic.

    Article  MathSciNet  Google Scholar 

  14. A. Juhász, Floer homology and surface decompositions, Geom. Topol., 12 (2008), 299–350.

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Kawasaki, The index of elliptic operators over V-manifolds, Nagoya Math. J., 84 (1981), 135–157.

    MathSciNet  MATH  Google Scholar 

  16. M. Khovanov, A categorification of the Jones polynomial, Duke Math. J., 101 (2000), 359–426.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. B. Kronheimer, An obstruction to removing intersection points in immersed surfaces, Topology, 36 (1997), 931–962.

    Article  MathSciNet  MATH  Google Scholar 

  18. P. B. Kronheimer and T. S. Mrowka, Gauge theory for embedded surfaces. I, Topology, 32 (1993), 773–826.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. B. Kronheimer and T. S. Mrowka, Gauge theory for embedded surfaces. II, Topology, 34 (1995), 37–97.

    Article  MathSciNet  MATH  Google Scholar 

  20. P. B. Kronheimer and T. S. Mrowka, Monopoles and Three-Manifolds, New Mathematical Monographs, Cambridge University Press, Cambridge, 2007.

    Book  MATH  Google Scholar 

  21. P. B. Kronheimer and T. S. Mrowka, Knot homology groups from instantons, preprint (2008).

  22. P. B. Kronheimer and T. S. Mrowka, Instanton Floer homology and the Alexander polynomial, Algebr. Geom. Topol., 10 (2010), 1715–1738.

    Article  MathSciNet  MATH  Google Scholar 

  23. P. B. Kronheimer and T. S. Mrowka, Knots, sutures, and excision, J. Differ. Geom., 84 (2010), 301–364.

    MathSciNet  MATH  Google Scholar 

  24. P. Kronheimer, T. Mrowka, P. Ozsváth, and Z. Szabó, Monopoles and lens space surgeries, Ann. Math. (2), 165 (2007), 457–546.

    Article  MATH  Google Scholar 

  25. E. S. Lee, An endomorphism of the Khovanov invariant, Adv. Math., 197 (2005), 554–586.

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Manolescu, An unoriented skein exact triangle for knot Floer homology, Math. Res. Lett., 14 (2007), 839–852.

    MathSciNet  MATH  Google Scholar 

  27. C. Manolescu and P. Ozsváth, On the Khovanov and knot Floer homologies of quasi-alternating links, in Proceedings of Gökova Geometry-Topology Conference 2007 (Gökova Geometry/Topology Conference (GGT), Gökova), pp. 60–81, 2008.

    Google Scholar 

  28. P. Ozsváth and Z. Szabó, Holomorphic disks and knot invariants, Adv. Math., 186 (2004), 58–116.

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Ozsváth and Z. Szabó, On the Heegaard Floer homology of branched double-covers, Adv. Math., 194 (2005), 1–33.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Rasmussen, Khovanov homology and the slice genus, Invent. Math. (2010). doi:10.1007/s00222-010-0275-6.

    MathSciNet  Google Scholar 

  31. J. Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University, 2003.

  32. J. Rasmussen, Knot polynomials and knot homologies, in Geometry and Topology of Manifolds, Fields Inst. Commun., vol. 47, pp. 261–280, Am. Math. Soc., Providence, 2005.

    Google Scholar 

  33. C. H. Taubes, Casson’s invariant and gauge theory, J. Differ. Geom., 31 (1990), 547–599.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Kronheimer.

Additional information

The work of the first author was supported by the National Science Foundation through NSF grants DMS-0405271 and DMS-0904589.

The work of the second author was supported by NSF grant DMS-0805841.

About this article

Cite this article

Kronheimer, P.B., Mrowka, T.S. Khovanov homology is an unknot-detector. Publ.math.IHES 113, 97–208 (2011). https://doi.org/10.1007/s10240-010-0030-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-010-0030-y

Keywords

Navigation